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1 Introduction

1.1 Overview

Multivariate calibration has historically been a major corner-
stone of chemometrics as applied to analytical chemistry.
However, there are a large number of diverse schools of
thought. To some, most of chemometrics involves multivariate
calibration. Certain Scandinavian and North American groups
have based much of their development over the past two
decades primarily on applications of the partial least squares
(PLS) algorithm. At the same time, the classic text by Massart
and co-workers1 does not mention PLS, and multivariate
calibration is viewed by some only as one of a large battery of
approaches to the interpretation of analytical data. In Scandina-
via, many use PLS for almost all regression problems (whether
appropriate or otherwise) whereas related methods such as
multiple linear regression (MLR) are more widely used by
mainstream statisticians.

There has developed a mystique surrounding PLS, a
technique with its own terminology, conferences and establish-
ment. Although originally developed within the area of
economics, most of its prominent proponents are chemists.
There are a number of commercial packages on the market-
place that perform PLS calibration and result in a variety of
diagnostic statistics. It is, though, important to understand that
a major historic (and economic) driving force was near infrared
spectroscopy (NIR), primarily in the food industry and in
process analytical chemistry. Each type of spectroscopy and
chromatography has its own features and problems, so much
software was developed to tackle specific situations which may
not necessarily be very applicable to other techniques such as
chromatography or NMR or MS. In many statistical circles NIR
and chemometrics are almost inseparably intertwined. How-
ever, other more modern techniques are emerging even in
process analysis, so it is not at all certain that the heavy
investment on the use of PLS in NIR will be so beneficial in the
future. Despite this, chemometric approaches to calibration
have very wide potential applicability throughout all areas of
quantitative analytical chemistry.

There are very many circumstances in which multivariate
calibration methods are appropriate. The difficulty is that to
develop a very robust set of data analytical techniques for a
particular situation takes a large investment in resources and
time, so the applications of multivariate calibration in some
areas of science are much less well established than in others. It
is important to distinguish the methodology that has built up
around a small number of spectroscopic methods such as NIR,
from the general principles applicable throughout analytical
chemistry. This article will concentrate on the latter. There are
probably several hundred favourite diagnostics available to the
professional user of PLS e.g. in NIR spectroscopy, yet each one
has been developed with a specific technique or problem in
mind, and are not necessarily generally applicable to all
calibration problems. The untrained user may become confused
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by these statistics; indeed he or she may have access to only one
specific piece of software and assume that the methods
incorporated into that package are fairly general or well known,
and may even inappropriately apply diagnostics that are not
relevant to a particular application.

There are a whole series of problems in analytical chemistry
for which multivariate calibration is appropriate, but each is
very different in nature.

1. The simplest is calibration of the concentration of a single
compound using a spectroscopic or chromatographic method,
an example being determining the concentration of chlorophyll
by EAS (electronic absorption spectroscopy).2 Instead of using
one wavelength (as is conventional for the determination of
molar absorptivity or extinction coefficients), multivariate
calibration involves using all or several of the wavelengths.

2. A more complex situation is a multi-component mixture
where all pure standards are available, such as a mixture of four
pharmaceuticals.3 It is possible to control the concentration of
the reference compounds, so that a number of carefully
designed mixtures can be produced in the laboratory. Some-
times the aim is to see whether a spectrum of a mixture can be
employed to determine individual concentrations, and, if so,
how reliably. The aim may be to replace a slow and expensive
chromatographic method by a rapid spectroscopic approach.
Another rather different aim might be impurity monitoring,4
how well the concentration of a small impurity may be
determined, for example, buried within a large chromatographic
peak.

3. A different approach is required if only the concentration
of a portion of the components is known in a mixture, for
example, the polyaromatic hydrocarbons within coal tar pitch
volatiles.5 In the natural samples there may be tens or hundreds
of unknowns, but only a few can be quantified and calibrated.
The unknown interferents cannot necessarily be determined and
it is not possible to design a set of samples in the laboratory
containing all the potential components in real samples.
Multivariate calibration is effective provided that the range of
samples used to develop the model is sufficiently representative
of all future samples in the field. If it is not, the predictions from
multivariate calibration could be dangerously inaccurate. In
order to protect against samples not belonging to the original
dataset, a number of approaches for determination of outliers
have been developed.

4. A final case is where the aim of calibration is not so much
to determine the concentration of a particular compound but a
group of compounds, for example protein in wheat.6 The criteria
here become fairly statistical and the methods will only work if
a sufficiently large and adequate set of samples are available.
However, in food chemistry if the supplier of a product comes
from a known source that is unlikely to change, it is often
adequate to set up a calibration model on this training set.

There are many pitfalls in the use of calibration models,
perhaps the most serious being variability in instrument
performance over time. Each instrument has different character-
istics and on each day and even hour the response can vary. How
serious this is for the stability of the calibration model needs to
be assessed before investing a large effort. Sometimes it is
necessary to reform the calibration model on a regular basis, by
running a standard set of samples, possibly on a daily or weekly
basis. In other cases multivariate calibration gives only a rough
prediction, but if the quality of a product or the concentration of
a pollutant appears to exceed a certain limit, then other more
detailed approaches can be used to investigate the sample. For
example, on-line calibration in NIR can be used for screening a
manufactured sample, and any dubious batches investigated in
more detail using chromatography.

There are many excellent articles and books on multivariate
calibration which provide greater details about the algo-
rithms.7–14 This article will compare the basic methods,
illustrated by case studies, and will also discuss more recent

developments such as multiway calibration and experimental
design of the training set. There are numerous software
packages available, including Piroutte,15 Unscrambler,16

SIMCA17 and Matlab Toolkit18 depending on the user’s
experience. However, many of these packages contain a large
number of statistics that may not necessarily be relevant to a
particular problem, and sometimes force the user into a
particular mode of thought. For the more computer based
chemometricians, using Matlab for developing applications
allows a greater degree of flexibility. It is important to recognise
that the basic algorithms for multivariate calibration are, in fact,
extremely simple, and can easily be implemented in most
environments, such as Excel, Visual Basic or C.

1.2 Case study 1

The first and main case study for this application is of the
electronic absorption spectra (EAS) of ten polyaromatic
hydrocarbons (PAHs). Table 1 is of the concentrations of these
PAHs in 25 spectra (dataset A) recorded at 1 nm intervals
between 220 and 350 nm, forming a matrix which is often
presented as having 25 rows (individual spectra) and 131
columns (individual wavelengths). The spectra are available as
Electronic Supplementary Information (ESI Table s1†). The
aim is to determine the concentration of an individual PAH in
the mixture spectra.

A second dataset consisting of another 25 spectra, whose
concentrations are given in Table 2, will also be employed
where necessary (dataset B). The full data are available as
Electronic Supplementary Information (ESI Table s2†). Most
calibration will be performed on dataset A.

1.3 Case study 2

The second case study is of two-way diode array detector
(DAD) HPLC data of a small embedded peak, that of
3-hydroxypyridine, buried within a major peak (2-hydroxypyr-
idine). The concentration of the embedded peak varies between
1 and 5% of the 2-hydroxypyridine, and a series of 14
chromatograms (including replicates) are recorded whose
concentrations are given in Table 3.

The chromatogram was sampled every 1 s, and a 40 s portion
of each chromatogram was selected to contain the peak cluster,
and aligned to the major peak maximum. Fifty-one wavelengths
between 230 and 350 nm (sampled at 2.4 nm intervals) were
recorded. Hence a dataset of dimensions 14 3 40 3 51 was
obtained, the aim being to use multimode calibration to
determine the concentration of the minor component. Further
experimental details are reported elsewhere.4

The dataset is available in ESI Table s3†. It is arranged so that
each column corresponds to a wavelength and there are 14
successive blocks, each of 40 rows (corresponding to successive
points in time). Horizontal lines are used to divide each block
for clarity. The chromatograms have been aligned.

2 Calibration methods

We will illustrate the methods of Sections 2.1–2.4 with dataset
A of case study 1, and the methods of Section 2.5 with case
study 2.

2.1 Univariate calibration

2.1.1 Classical calibration. There is a huge literature on
univariate calibration.19–23 One of the simplest problems is to
determine the concentration of a single compound using the
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response of a single detector, for example a single spectroscopic
wavelength or a chromatographic peak area.

Mathematically a series of experiments can be performed to
give

x ≈ c . s

where, in the simplest case, x is a vector consisting of
absorbances at one wavelength for a number of samples (or the
response), and c is of the corresponding concentrations. Both

vectors have length I, equal to the number of samples. The
scalar s relates these parameters and is determined by the
experiments.

A simple method for solving this equation is as follows:

cA .x ≈ cA.c . s

so

(cA.c)21 . cA. x ≈ (cA.c)21 . (cA.c). s
or

Table 1 Concentrations of polyarenes in dataset A for case study 1a

Polyarene conc./mg L21

Spectrum Py Ace Anth Acy Chry Benz Fluora Fluore Nap Phen

1 0.456 0.120 0.168 0.120 0.336 1.620 0.120 0.600 0.120 0.564
2 0.456 0.040 0.280 0.200 0.448 2.700 0.120 0.400 0.160 0.752
3 0.152 0.200 0.280 0.160 0.560 1.620 0.080 0.800 0.160 0.118
4 0.760 0.200 0.224 0.200 0.336 1.080 0.160 0.800 0.040 0.752
5 0.760 0.160 0.280 0.120 0.224 2.160 0.160 0.200 0.160 0.564
6 0.608 0.200 0.168 0.080 0.448 2.160 0.040 0.800 0.120 0.940
7 0.760 0.120 0.112 0.160 0.448 0.540 0.160 0.600 0.200 0.118
8 0.456 0.080 0.224 0.160 0.112 2.160 0.120 1.000 0.040 0.118
9 0.304 0.160 0.224 0.040 0.448 1.620 0.200 0.200 0.040 0.376

10 0.608 0.160 0.056 0.160 0.336 2.700 0.040 0.200 0.080 0.118
11 0.608 0.040 0.224 0.120 0.560 0.540 0.040 0.400 0.040 0.564
12 0.152 0.160 0.168 0.200 0.112 0.540 0.080 0.200 0.120 0.752
13 0.608 0.120 0.280 0.040 0.112 1.080 0.040 0.600 0.160 0.376
14 0.456 0.200 0.056 0.040 0.224 0.540 0.120 0.800 0.080 0.376
15 0.760 0.040 0.056 0.080 0.112 1.620 0.160 0.400 0.080 0.940
16 0.152 0.040 0.112 0.040 0.336 2.160 0.080 0.400 0.200 0.376
17 0.152 0.080 0.056 0.120 0.448 1.080 0.080 1.000 0.080 0.564
18 0.304 0.040 0.168 0.160 0.224 1.080 0.200 0.400 0.120 0.118
19 0.152 0.120 0.224 0.080 0.224 2.700 0.080 0.600 0.040 0.940
20 0.456 0.160 0.112 0.080 0.560 1.080 0.120 0.200 0.200 0.940
21 0.608 0.080 0.112 0.200 0.224 1.620 0.040 1.000 0.200 0.752
22 0.304 0.080 0.280 0.080 0.336 0.540 0.200 1.000 0.160 0.940
23 0.304 0.200 0.112 0.120 0.112 2.700 0.200 0.800 0.200 0.564
24 0.760 0.080 0.168 0.040 0.560 2.700 0.160 1.000 0.120 0.376
25 0.304 0.120 0.056 0.200 0.560 2.160 0.200 0.600 0.080 0.752
a Abbreviations for PAHs: Py = pyrene; Ace = acenaphthene; Anth = anthracene; Acy = acenaphthylene; Chry = chrysene; Benz = benzanthracene;
Fluora = fluoranthene; Fluore = fluorene; Nap = naphthalene; Phen = phenanthrene.

Table 2 Concentration of the polyarenes in the dataset B for case study 1

Polyarene conc./mg L21

Spectrum Py Ace Anth Acy Chry Benz Fluora Fluore Nap Phen

1 0.456 0.120 0.168 0.120 0.336 1.620 0.120 0.600 0.120 0.564
2 0.456 0.040 0.224 0.160 0.560 2.160 0.120 1.000 0.040 0.188
3 0.152 0.160 0.224 0.200 0.448 1.620 0.200 0.200 0.040 0.376
4 0.608 0.160 0.280 0.160 0.336 2.700 0.040 0.200 0.080 0.188
5 0.608 0.200 0.224 0.120 0.560 0.540 0.040 0.400 0.040 0.564
6 0.760 0.160 0.168 0.200 0.112 0.540 0.080 0.200 0.120 0.376
7 0.608 0.120 0.280 0.040 0.112 1.080 0.040 0.600 0.080 0.940
8 0.456 0.200 0.056 0.040 0.224 0.540 0.120 0.400 0.200 0.940
9 0.760 0.040 0.056 0.080 0.112 1.620 0.080 1.000 0.200 0.752

10 0.152 0.040 0.112 0.040 0.336 1.080 0.200 1.000 0.160 0.940
11 0.152 0.080 0.056 0.120 0.224 2.700 0.200 0.800 0.200 0.564
12 0.304 0.040 0.168 0.080 0.560 2.700 0.160 1.000 0.120 0.752
13 0.152 0.120 0.112 0.200 0.560 2.160 0.200 0.600 0.160 0.376
14 0.456 0.080 0.280 0.200 0.448 2.700 0.120 0.800 0.080 0.376
15 0.304 0.200 0.280 0.160 0.560 1.620 0.160 0.400 0.080 0.188
16 0.760 0.200 0.224 0.200 0.336 2.160 0.080 0.400 0.040 0.376
17 0.760 0.160 0.280 0.120 0.448 1.080 0.080 0.200 0.080 0.564
18 0.608 0.200 0.168 0.160 0.224 1.080 0.040 0.400 0.120 0.188
19 0.760 0.120 0.224 0.080 0.224 0.540 0.080 0.600 0.040 0.752
20 0.456 0.160 0.112 0.080 0.112 1.080 0.120 0.200 0.160 0.752
21 0.608 0.080 0.112 0.040 0.224 1.620 0.040 0.800 0.160 0.940
22 0.304 0.080 0.056 0.080 0.336 0.540 0.160 0.800 0.200 0.752
23 0.304 0.040 0.112 0.120 0.112 2.160 0.160 1.000 0.160 0.564
24 0.152 0.080 0.168 0.040 0.448 2.160 0.200 0.800 0.120 0.940
25 0.304 0.120 0.056 0.160 0.448 2.700 0.160 0.600 0.200 0.188
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where the A is the transpose as described in Appendix A1.
Many conventional texts use summations rather than matri-

ces for determination of regression equations, but both
approaches are equivalent. In Fig. 1, the absorbance of the
spectra of case study 1A at 336 nm is plotted against the
concentration of pyrene (Table 1). The graph is approximately
linear, and provides a best fit slope calculated by
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so that x̂ = 0.291 ĉ. Note the hat (ˆ) symbol which indicates a
prediction. The results are presented in Table 4.

The quality of prediction can be determined by the residuals
(or errors) i.e. the difference between the observed and
predicted, i.e. x2 x̂; the less this is the better. Generally the root
mean error is calculated,

E x x di i

i

I

= -
=
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ˆ ) /2

where d is called the degrees of freedom. In the case of
univariate calibration this equals the number of observations (N)
minus the number of parameters in the model (P) or in this case,
25 2 1 = 24, so that

0.0289/24 0.0347=

This error can be represented as a percentage of the mean E% =
100 (E/x̄) = 24.1% in this case. It is always useful to check the
original graph (Fig. 1) just to be sure, which appears a
reasonable answer. Note that classical calibration is slightly
illogical in analytical chemistry. The aim of calibration is to
determine concentrations from spectral intensities, and not vice
versa yet the calibration equation in this section involves fitting
a model to determine a peak height from a known concentra-
tion.

For a new or unknown sample, the concentration can be
estimated (approximately) by using the inverse of the slope or

ĉ = 3.44 x

The spectrum of pure pyrene is given in Fig. 2, superimposed
over the spectra of the other compounds in the mixture. It can be
seen that the wavelength chosen largely represents pyrene, so a
reasonable model can be obtained by univariate methods. For
most of the other compounds in the mixtures this is not possible,
so a much poorer fit to the data would be obtained.

2.1.2 Inverse calibration. Although classical calibration is
widely used, it is not always the most appropriate approach in
analytical chemistry, for two main reasons. First, the ultimate
aim is usually to predict the concentration (or factor) from the
spectrum or chromatogram (response) rather than vice versa.
There is a great deal of technical discussion of the philosophy
behind different calibration methods, but in other areas of
chemistry the reverse may be true, for example, can a response

Table 3 Concentrations of 3-hydroxypyridine in the chromatograms of
case study 2

Sample Conc./mM

1 0.0158
2 0.0158
3 0.0315
4 0.0315
5 0.0315
6 0.0473
7 0.0473
8 0.0473
9 0.0473

10 0.0631
11 0.0631
12 0.0631
13 0.0789
14 0.0789

Fig. 1 Absorption at 336 nm against concentration of pyrene.

Table 4 Results of regression of the concentration of pyrene (mg L21)
against the intensity of absorbance at 336 nm

Concentration Absorbance
Predicted
absorbance Residual

0.456 0.161 0.133 0.028
0.456 0.176 0.133 0.043
0.152 0.102 0.044 0.058
0.760 0.184 0.221 20.037
0.760 0.231 0.221 0.010
0.608 0.171 0.176 20.006
0.760 0.183 0.221 20.039
0.456 0.160 0.133 0.027
0.304 0.126 0.088 0.038
0.608 0.186 0.177 0.009
0.608 0.146 0.177 20.031
0.152 0.064 0.044 0.020
0.608 0.139 0.177 20.038
0.456 0.110 0.133 20.023
0.760 0.202 0.221 20.019
0.152 0.087 0.044 0.043
0.152 0.076 0.044 0.032
0.304 0.104 0.088 0.016
0.152 0.120 0.044 0.076
0.456 0.125 0.133 20.008
0.608 0.173 0.177 20.004
0.304 0.092 0.088 0.004
0.304 0.135 0.088 0.046
0.760 0.212 0.221 20.009
0.304 0.142 0.088 0.054
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(e.g. a synthetic yield) be predicted from the values of the
independent factors (e.g. temperature and pH)? The second
relates to error distributions. The errors in the response are often
due to instrumental performance. Over the years, instruments
have become more reliable. The independent variable (often
concentration) is usually determined by weighings, dilutions
and so on, and is often the largest source of error. The quality of
volumetric flasks, syringes and so on has not improved
dramatically over the years. Classical calibration fits a model so
that all errors are in the response [Fig. 3(a)], whereas with
improved instrumental performance, a more appropriate as-
sumption is that errors are primarily in the measurement of
concentration [Fig. 3(b)].

Calibration can be performed by the inverse method where

c ≈ x . b

or

b

x c

x

i i

i

I

i

i

I= ¢ ¢ =

=

Â
Â

( .x x x. ) .c =_1 1

2

1

giving for this example, ĉ = 3.262 x. Note that b is only
approximately the inverse of s (see above), because each model
makes different assumptions about error distributions. How-
ever, for good data, both models should provide fairly similar
predictions, if not there could be some other factor that
influences the data, such as an intercept, non-linearities, outliers
or unexpected noise distributions. For heteroscedastic noise
distributions24 there are a variety of enhancements to linear
calibration. However, these are rarely taken into consideration
when extending the principles to the multivariate calibration.

Most chemometricians prefer inverse methods, but most
traditional analytical chemistry texts introduce the classical
approach to calibration. It is important to recognise that there
are substantial differences in terminology in the literature, the
most common problem being the distinction between ‘x’ and ‘y’
variables. In many areas of analytical chemistry, concentration
is denoted by ‘x’, the response (such as a spectroscopic peak
height) by ‘y’. However, most workers in the area of
multivariate calibration have first been introduced to regression
methods via spectroscopy or chromatography whereby the
experimental data matrix is denoted as ‘X’, and the concentra-
tions or predicted variables by ‘y’. In this paper we indicate the
experimentally observed responses by ‘x’ such as spectroscopic
absorbances of chromatographic peak areas, but do not use ‘y’
in order to avoid confusion.

2.1.3 Including the intercept. In many situations it is
appropriate to include extra terms in the calibration model. Most
commonly an intercept (or baseline) term is included to give an
inverse model of the form

c ≈ b0+ b1x

which can be expressed in matrix/vector notation by

c ≈ X . b

for inverse calibration where c is a column vector of
concentrations and b is a column vector consisting of two
numbers, the first equal to b0 (the intercept) and the second to b1

(the slope). X is now a matrix of two columns, the first of which
is a column of 1’s, the second the spectroscopic readings, as
presented in Table 5.

Exactly the same principles can be employed for calculating
the coefficients as in Section 2.1.2, but in this case b is a vector
rather than scalar, and X is a matrix rather than a vector so
that

b = (XA.X)21 . XA . c

or

ĉ = 20.178 + 4.391 x

Note that the coefficients are different from those of Section
2.1.2. One reason is that there are still a number of interferents,
from the other PAHs, in the spectrum at 336 nm, and these are
modelled partly by the intercept term. The models of Sections
2.1.1 and 2.1.2 force the best fit straight line to pass through the

Fig. 2 Spectrum of pyrene superimposed over the spectra of the other pure
PAHs.

Fig. 3 Errors in (a) Classical and (b) Inverse calibration.

Table 5 X matrix for example of Section 2.1.3

1 0.456
1 0.456
1 0.152
1 0.760
1 0.760
1 0.608
1 0.760
1 0.456
1 0.304
1 0.608
1 0.608
1 0.152
1 0.608
1 0.456
1 0.760
1 0.152
1 0.152
1 0.304
1 0.152
1 0.456
1 0.608
1 0.304
1 0.304
1 0.760
1 0.304
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origin. A better fit can be obtained if this condition is not
required.

The predicted concentrations are easy to obtain, the easiest
approach involving the use of matrix-based methods, so that

ĉ = X.b

the root mean square error being given by

E

c c
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i i

i
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=

-
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= =
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Â( ˆ )
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2
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2 059 23 0 106 mg L

representing an E% of 23.3%. Notice that, strictly speaking, the
error term is divided by 23 (number of degrees of freedom rather
than 25) to reflect the two parameters used in the model.

An alternative, and common, method for including the
intercept is to mean centre both the x and the c variables to fit
the equation

c 2 c̄ = (x 2 x̄)b

or
cenc = cenx b

or
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It is easy to show algebraically that the value of b is identical
with b1 obtained for the uncentred data ( = 4.391 in this
example), but includes the intercept, whereas the old value of b0

is given by (c̄ 2 b1x̄), so the two methods are related. It is
common to centre both sets of variables for this reason, the
calculations being mathematically simpler than including an
intercept term. Note that the concentrations must be centred at
the same time as the response, and the predictions are of the
concentrations minus their mean.

It should be pointed out that the predictions for both methods
described in this section differ from those obtained for the
uncentred data. It is also useful to realise that it is also possible
to use an intercept in models obtained using classical calibra-
tion; the details have been omitted in this section for brevity.

2.2 Multiple linear regression

2.2.1 Multidetector advantage. Multiple linear regression
(MLR) is an extension when more than one detector response is
employed. There are two principal reasons for this. The first is
that there may be more than one component in a mixture. Under
such circumstances it is advisable to employ more than one
response (the exception being if the concentrations of some of
the components are known to be correlated). For N components,
at least N wavelengths must be used. The second is that each
detector contains some information. Some individual wave-
lengths in a spectrum may be influenced by noise or unknown
interferents. Using, for example, 100 wavelengths averages out
the information, and will often provide a better result than
relying on a single wavelength.

2.2.2 Multiwavelength equations. In certain applications,
equations can be developed that are used to predict the
concentrations of compounds by monitoring at a finite number

of wavelengths. A classical area is in pigment analysis by
electronic absorption spectroscopy, especially in the area of
chlorophyll chemistry.25 In order to determine the concentration
of four pigments in a mixture, investigators recommend
monitoring at four different wavelengths, and use an equation
that links absorbance at each wavelength to concentration.

In case study 1, only certain compounds absorb above 330
nm, the main ones being pyrene, fluoranthene, acenaphthylene
and benzanthracene (note that the small absorbance due to a
fifth component may be regarded as an interferent, although
including this in the model will, of course, result in better
predictions). It is possible to choose four wavelengths, prefera-
bly ones in which the absorbance ratios of these four
compounds differ. In Fig. 4, the wavelengths 331, 335, 341 and
349 nm are indicated, and chosen for calibration.

Calibration equations can be obtained, as follows, using
inverse methods. First, select the absorbances of the 25 spectra
at these four wavelengths to give an X matrix with four columns
and 25 rows. Second, obtain the corresponding C matrix
consisting of the relevant concentrations (Table 6). The aim is to
find coefficients B relating X and C by

C ≈ X . B

where B is a 4 3 4 matrix, each column representing a
compound and each row a wavelength. This equation can be
solved using regression methods of Section 2.1.2, changing
vectors and scalars to matrices, so that

B = (XA.X)21. XA . C

giving the matrix in Table 6. These could be expressed in
equation form if required, for example, the first column of B
suggests that

estimated [pyrene] = 21.827 A331 + 7.512 A33526.094 A341 +
2.355 A349

In UV/VIS spectroscopy of pigments, for example, these type of
equations are very common.

An estimated concentration matrix can be obtained by

Ĉ = X . B

as indicated in Table 6. For pyrene, the root mean square error
of prediction is given by

E c ci i

i

I

= -
=

Â( ˆ ) /2

1

21

(note that the divisor is 21 not 25 as four degrees of freedom are
lost because there are four compounds in the model), equal to
0.042 or 9.34%, of the average concentration of pyrene, a
significant improvement over the univariate model. Even
further improvement could be obtained by including the

Fig. 4 Spectra of pyrene, fluoranthene, acenaphthalene and benzo[a])an-
thracene between 330 and 350 nm with 331, 335, 341 and 349 nm
indicated.
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intercept (usually performed by centring the data) and including
the concentrations of more compounds.

It is possible also to employ classical methods. For the single
detector, single wavelength model of Section 2.1.1

ĉ = x/s

where s is a scalar, and x and c are vectors corresponding to the
concentrations and absorbances for each of the N samples.
Where there are several components in the mixture, this
becomes

Ĉ = X̂.SA.(S.SA)21

Table 6 Matrices X, C, B and Ĉ for Section 2.2.2

C X

331 335 341 349 Py Ace Benz Fluora

0.138 0.165 0.102 0.058 0.456 0.120 1.620 0.120
0.154 0.178 0.133 0.078 0.456 0.040 2.700 0.120
0.093 0.102 0.087 0.053 0.152 0.200 1.620 0.080
0.152 0.191 0.093 0.046 0.760 0.200 1.080 0.160
0.191 0.239 0.131 0.073 0.760 0.160 2.160 0.160
0.148 0.178 0.105 0.056 0.608 0.200 2.160 0.040
0.149 0.193 0.074 0.029 0.760 0.120 0.540 0.160
0.137 0.164 0.105 0.057 0.456 0.080 2.160 0.120
0.107 0.129 0.093 0.057 0.304 0.160 1.620 0.200
0.168 0.193 0.124 0.067 0.608 0.160 2.700 0.040
0.119 0.154 0.058 0.021 0.608 0.040 0.540 0.040
0.06 0.065 0.049 0.028 0.152 0.160 0.540 0.080
0.112 0.144 0.067 0.033 0.608 0.120 1.080 0.040
0.093 0.114 0.056 0.034 0.456 0.200 0.540 0.120
0.169 0.211 0.1 0.052 0.760 0.040 1.620 0.160
0.082 0.087 0.081 0.054 0.152 0.040 2.160 0.080
0.071 0.077 0.059 0.037 0.152 0.080 1.080 0.080
0.084 0.106 0.066 0.037 0.304 0.040 1.080 0.200
0.113 0.119 0.115 0.078 0.152 0.120 2.700 0.080
0.106 0.13 0.073 0.042 0.456 0.160 1.080 0.120
0.151 0.182 0.091 0.043 0.608 0.080 1.620 0.040
0.08 0.095 0.056 0.035 0.304 0.080 0.540 0.200
0.128 0.138 0.114 0.071 0.304 0.200 2.700 0.200
0.177 0.219 0.132 0.078 0.760 0.080 2.700 0.160
0.133 0.147 0.109 0.066 0.304 0.120 2.160 0.200

B

Py Ace Benz Fluora

331 21.827 5.950 20.591 21.741
335 7.512 23.105 211.209 2.785
341 26.094 24.061 48.280 26.409
349 2.355 3.972 219.343 9.734

Ĉ

Py Ace Benz Fluora

0.502 0.125 1.872 0.130
0.429 0.133 2.826 0.134
0.191 0.094 1.977 0.080
0.699 0.116 1.370 0.119
0.820 0.152 2.121 0.204
0.559 0.124 1.904 0.110
0.795 0.102 0.760 0.086
0.476 0.106 2.048 0.100
0.341 0.085 1.878 0.132
0.545 0.163 2.428 0.102
0.635 0.078 0.598 0.054
0.146 0.067 1.060 0.035
0.547 0.078 0.916 0.098
0.425 0.107 0.713 0.128
0.789 0.151 1.357 0.159
0.137 0.103 1.843 0.106
0.176 0.091 1.228 0.073
0.328 0.050 1.233 0.086
0.170 0.146 2.643 0.157
0.437 0.097 1.192 0.118
0.638 0.135 1.433 0.079
0.309 0.093 0.915 0.107
0.275 0.152 2.508 0.122
0.701 0.147 2.305 0.215
0.352 0.154 2.260 0.122
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and the trick is to estimate S which can be done in one of two
ways:
(a) by knowledge of the true spectra; and
(b) by regression since C . S ≈ X, so Ŝ = (CA.C)21CA.X.

Note that 

B ≈ ŜA. (Ŝ.ŜA)21

However, as in univariate calibration, the coefficients obtained
using both approaches may not be exactly equal, both methods
making different assumptions about error distributions.

Such equations make assumptions that the main analytes are
all known, and work well only if this is true. Applying to
mixtures where there are unknown interferents can result in
serious estimation errors.

2.2.3 Multivariate approaches. The methods of Section
2.2.2 could be extended to all ten PAHs in the dataset of case
study 1, and with appropriate choice of ten wavelengths may
give reasonable estimates of concentrations. However, all the
original wavelengths contain some information and there is no
reason why most of the spectrum cannot be employed.

There is a fairly confusing literature on the use of multiple
linear regression for calibration in chemometrics, primarily
because many workers present their arguments in a very
formalised manner. However, the choice and applicability of
method depends on three main factors:
(1) the number of compounds in the mixture (ten in this case) or
responses to be estimated; (2) the number of experiments (25 in
this case) often spectra or chromatograms; and (3) the number
of detectors (131 wavelengths in this case).

In order to have a sensible model, the number of compounds
must be less than or equal to the smaller of the number of
experiments or number of detectors. In certain specialised cases
this limitation can be infringed if it is known that there are
correlations between the concentrations of different com-
pounds. This may happen, for example, in environmental
chemistry where there could be tens or hundreds of compounds
in a sample, but the presence of one (e.g. a homologous series)
suggests the presence of another, so, in practice there are only a
few independent factors or groups of compounds. Also,

correlations can be built into the design of a training set as
discussed in Section 3.4. In most real-world situations there
definitely will be correlations in complex multicomponent
mixtures. However, the methods described below are for the
case where the number of compounds is smaller than the
number of experiments or number of detectors, for reasons
described above.

The X data matrix is ideally related to the concentration and
spectral matrices by

X = C . S

where X is a 25 3 131 matrix, C a 25 3 10 matrix and S a 10
3 131 matrix in the example discussed here. In calibration it is
assumed that a series of experiments are performed in which C
is known (e.g. a set of mixtures of compounds with known
concentrations are recorded spectroscopically). An estimate of
S can then be obtained by

Ŝ = (CA.C)21.C.X

and then the concentrations can be predicted

Ĉ = (X.Ŝ.A(Ŝ.ŜA)21

Unless the number of wavelengths or experiments are exactly
equal to the number of compounds, the prediction will not
exactly model the data. This approach works because the
matrices (CA.C) and (Ŝ.ŜA) are square matrices whose dimen-
sions equal the number of compounds in the mixture (10 3 10)
and have inverses, provided that the experiments have been
suitably designed and the concentrations of the compounds are
not correlated. The predicted concentrations, using this ap-
proach, are given in Table 7, together with the percentage root
mean square prediction error: note there are only 15 degrees of
freedom ( = 25 experiments 2 10 compounds). Had the data
been centred the number of degrees of freedom would be
reduced further. The predicted concentrations are acceptable for
most compounds apart from acenaphthylene. The predicted
spectra are presented in Fig. 5, and are not nearly so clear. In fact
it would be remarkable that for such a complex mixture it is
possible to reconstruct ten spectra well, given that there is a
great deal of overlap. Pyrene, which is indicated in bold,

Table 7 Predicted values of concentrations using multiple linear regression as indicated in Section 2.3.1

Polyarene conc./mg L21

Spectrum Py Ace Anth Acy Chry Benz Fluora Fluore Nap Phen

1 0.485 0.110 0.178 0.154 0.374 1.653 0.157 0.536 0.107 0.511
2 0.411 0.028 0.325 0.133 0.495 2.726 0.152 0.373 0.137 0.620
3 0.178 0.158 0.274 0.220 0.546 1.668 0.057 0.860 0.164 0.205
4 0.699 0.177 0.241 0.150 0.362 1.107 0.124 0.730 0.031 0.690
5 0.819 0.140 0.287 0.158 0.223 2.121 0.172 0.239 0.191 0.516
6 0.596 0.224 0.157 0.052 0.426 2.202 0.057 0.927 0.132 1.025
7 0.782 0.146 0.126 0.128 0.484 0.467 0.186 0.474 0.157 0.141
8 0.447 0.098 0.202 0.249 0.032 2.192 0.160 1.260 0.099 0.304
9 0.328 0.165 0.237 0.018 0.453 1.593 0.208 0.087 0.001 0.341

10 0.586 0.232 0.044 0.094 0.355 2.681 0.089 0.114 0.072 0.223
11 0.623 0.057 0.207 0.111 0.581 0.475 0.052 0.369 0.027 0.611
12 0.141 0.167 0.185 0.157 0.103 0.531 0.112 0.279 0.119 0.715
13 0.596 0.095 0.239 0.123 0.063 1.127 -0.058 0.631 0.176 0.494
14 0.453 0.211 0.081 0.013 0.259 0.542 0.165 0.753 0.105 0.262
15 0.781 0.036 0.048 0.112 0.103 1.659 0.181 0.425 0.077 0.964
16 0.129 0.065 0.112 0.016 0.347 2.166 0.113 0.378 0.228 0.353
17 0.168 0.114 0.070 0.066 0.474 1.031 0.137 0.876 0.065 0.496
18 0.287 0.079 0.148 0.108 0.217 1.101 0.189 0.332 0.136 0.245
19 0.181 0.141 0.229 0.054 0.264 2.615 0.071 0.373 0.011 0.876
20 0.424 0.154 0.095 0.147 0.494 1.115 0.105 0.349 0.241 1.022
21 0.648 0.045 0.121 0.220 0.221 1.596 -0.008 0.903 0.181 0.710
22 0.293 0.124 0.271 0.048 0.344 0.533 0.235 1.019 0.160 0.986
23 0.289 0.191 0.110 0.085 0.143 2.653 0.187 0.769 0.154 0.592
24 0.738 0.042 0.192 0.006 0.554 2.704 0.129 1.063 0.111 0.316
25 0.327 0.057 0.010 0.355 0.487 2.216 0.081 0.791 0.131 0.893

E% 7.88 32.86 15.61 59.93 13.43 3.23 46.24 23.21 29.41 16.52
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exhibits most of the main peak maxima of the known pure data
(compare with Fig. 1). Often, other knowledge of the system is
required to produce better reconstructions of individual spectra.
The reason why concentration predictions work significantly
better than spectral reconstruction is that, for most compounds,
there are characteristic regions of the spectrum where there are
prominent features. These parts of the spectra for individual
compounds will be predicted well, and will disproportionately
influence the effectiveness of the method for determining
concentrations.

MLR predicts concentrations well in this case because all
significant compounds are included in the model, and so the
data are almost completely modelled. If we knew of only a few
compounds, there would be much poorer predictions. Consider
the situation in which only pyrene, acenaphthene and anthra-
cene are known. The C matrix now has only three columns, and
the predicted concentrations are given in Table 8. The errors are,
as expected, much larger than those of Table 7. The absorbances
of the remaining seven compounds are mixed up with those of
the three modelled components. This problem could be
overcome if some characteristic wavelengths or regions of the
spectrum at which the selected compounds absorb most strongly
(see Section 2.2.2) are identified, or if the experiments were
designed so that there are correlations in the data, or even by a

number of methods for weighted regression, but the need to
model all significant absorbants is a major limitation of MLR.

The approach described above is related to classical calibra-
tion, but it is also possible to envisage an inverse calibration
model since

Ĉ = X . B

However, unlike in Section 2.2.2, there are now more
wavelengths than samples or components in the mixture. The
matrix B would be given by

B = (XA.X)21. XA . C

as above. A problem with this approach is that the matrix (XAX)
is now a large matrix, with 131 rows and 131 columns,
compared with the matrices used above which have ten rows
and ten columns only. If there are only ten components in a
mixture, the matrix XAX only has ten degrees of freedom and
may not have an inverse because there will be strong
correlations between wavelengths. In practice because of noise
and unknown interferents an inverse can often be computed, but
is not very meaningful. The determinant of the matrix XAX will
be very small, and factors such as noise will influence the
answer. This use of the inverse of XAX is only practicable if: (1)
the number of experiments and wavelengths are at least equal to
the number of components in the mixture and (2) the number of
experiments is at least equal to the number of wavelengths.

Condition 2 either requires a large number of extra experi-
ments or a reduction to 25 wavelengths. There have been a
number of algorithms that have been developed to reduce the
wavelengths to the most significant ones, so enabling inverse
models to be used, but there is no real advantage over classical
models unless very specific information is available about error
distributions.

2.3 Principal components regression

MLR-based methods have the disadvantage that all significant
components must be known. PCA (principal components
analysis)-based methods do not require details of all compo-
nents, although it is necessary to make a sensible estimate of
how many significant components characterise a mixture, but
not necessarily their chemical identities.

2.3.1 Principal components analysis. There are innumer-
able excellent descriptions of the mathematical basis of
PCA26230 and this article will provide only a general overview.
It is important, first, not to be confused between algorithms
which are a means to an end, and the end in itself. There are
several PCA algorithms of which NIPALS (described in
Appendix A2.1) and SVD are two of the most common. If
correctly applied, they will both lead to the same answer (within
computer precision), the best approach depending on factors
such as computing power and the number of components to be
calculated.

PCA decomposes an X matrix into two smaller matrices, one
of scores (T) and the other of loadings (P) as follows

X = T . P

as illustrated symbolically in Fig. 6.
The scores matrix has the following properties:
1. The number of rows equals the number of rows in the

original data matrix, usually the number of samples.
2. The number of columns equals the number of significant

factors in the data, and can be any number from 1 upwards.
Ideally it equals the number of compounds in the original
dataset but noise and spectral similarity combine to distort this
number. Each column corresponds to a principal component.

3. The sum of squares of the elements of each column of the
scores matrix relates to a number called the eigenvalue, and is

Fig. 5 Spectra as predicted by MLR.

Table 8 Predictions by MLR when only three compounds are known

Polyarene conc./mg L21

Spectrum Py Ace Anth

1 0.542 0.145 0.155
2 0.401 0.182 0.333
3 0.226 0.269 0.128
4 0.759 0.015 0.229
5 0.750 0.104 0.209
6 0.483 0.168 0.283
7 0.874 0.053 0.000
8 0.468 0.251 0.084
9 0.335 0.130 0.212

10 0.479 0.366 20.054
11 0.743 20.082 0.232
12 0.213 0.013 0.227
13 0.458 20.004 0.208
14 0.432 0.090 0.053
15 0.823 0.013 0.188
16 0.021 0.262 0.148
17 0.258 0.160 0.125
18 0.333 0.116 0.101
19 0.091 0.190 0.345
20 0.503 0.082 0.221
21 0.653 0.098 0.137
22 0.368 20.071 0.425
23 0.190 0.324 0.140
24 0.616 0.228 0.175
25 0.562 0.306 0.054

E% 28.01 115.74 61.89
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often given as a definition of the eigenvalue. The larger the
eigenvalue the more significant the component. The principal
components are calculated in order of significance.

The loadings matrix has the following properties:
1. The number of columns equals the number of columns in

the original data matrix, usually the number of detectors, or
wavelengths in this case study.

2. The number of rows equals the number of significant
factors in the data. Each row corresponds to a principal
component.

3. The sum of squares of the elements of each column equals
1.

Hence each principal component, a, is characterised by: (1) a
scores vector ta being the ath column of T, (2) a loadings vector
pa being the ath row of P; and (3) an eigenvalue ga which may

be defined by g ta ia

i

I

=
=

Â 2

1

.

The sum of eigenvalues over all significant components
should equal approximately the sum of squares of the original
data, and will never be more than this number.

Principal components (PCs) are often presented geometri-
cally. Spectra can be represented as points in J -dimensional
space where each of the J -axes represents the intensity at each
wavelength. Hence in case study 1, each spectrum an be
represented by a point in 131-dimensional space The dataset can
be represented by 25 such points, and the pattern formed in this
new space indicates information about the data.

The first PC can be defined as the best fit straight line in this
multi-dimensional space. The scores represent the distance
along this line, and the loadings the direction (angle) of the
straight line. If there is only one compound in a series of spectra,
all the spectra will fall approximately on the straight line, since
the intensity of each spectrum will relate directly to concentra-
tion. This distance is the score of the PC. If there are two
components, ideally two PCs will be calculated, and represent-
ing the axes of a plane. For ten compounds, ideally ten PCs are
calculated to give a ten-dimensional subspace of the original
131 dimensional space (in this case).

Another important property of PCs is often loosely called
orthogonality. Numerically this means that

t tia

i

I

ib

=
Â =

1

0

and

p paj

j

I

bj

=
Â =

1

0

or ta. tb = 0 and pa. pb = 0 for two components a and b using
vector notation. Some authors state that principal components
are uncorrelated. Strictly speaking this property depends on
data preprocessing, and is only true if the variables have been
centred (down each column) prior to PCA. We will, however,
use the terminology ‘orthogonality’ to refer to these properties
below.

PCA can be used to reduce the number of original variables
to a few reduced variables or PCs, by keeping only the largest
or most significant PCs; methods for selecting how many
components to keep are discussed in Section 3. In case study 1
an ideal situation would be to reduce the 131 wavelengths to ten
PCs. There are a variety of methods of data preprocessing or
scaling (such as centring and standardisation) that are some-
times used,20 but below we use the raw data directly. The scores
of the first ten PCs are given in Table 9 . Using ten PCs implies
that up to ten distinct compounds are in the mixture, but, unlike
in MLR it is not necessary to know the concentrations of all
these components in advance, only those of the calibrants. This
property, of course, allows chemometric techniques to be
employed in situations where only one or two compounds are of
interest, for example measuring the concentration of chloro-
phyll in pigment extracts of plants, or the concentration of a
nutrient in a food sample. There may be a dozen or more
chemical components in the mixture, most of which are
unknown or of no interest. Hence it is desired only to calibrate
against the known compound.

2.3.2 Regression techniques. Principal components are
sometimes called abstract factors, and are primarily mathemat-
ical entities. In multivariate calibration the aim is to convert
these to compound concentrations. PCR uses regression
(sometimes called transformation or rotation) to convert PC
scores onto concentrations. This process is often loosely called
factor analysis, although terminology differs according to
author and discipline.

If cn is a vector containing the known concentration of
compound n in the spectra (25 in this instance), then the PC
scores can be related as follows:

cn ≈ T . rn

where rn is a column vector whose length equals the number of
PCs calculated, sometimes called a rotation or transformation
vector. Ideally the length of rn should be equal to the number of
compounds in the mixture ( = 10). The vector for pyrene is
presented in Table 10 and can be obtained by using the pseudo-
inverse of T,

rn = (TA. T)21. TA. cn

In practice, the number of compounds in a series of mixtures is
not always known in advance. In a complex naturally occurring
mixture it may often be impossible to determine how many
significant compounds are present, and even if this is known the
number of significant principal components is often much less
than the true number of compounds present due to spectral
similarity, noise, correlations in concentrations and so on.
Hence the number of columns in T can vary. The predictions as
more PCs are employed will be closer to the true values.

There are a number of methods for determining how good the
predictions are. Most use the calibration of predictions of
concentration, on the c (or according to some authors y) block of
data. These methods have been briefly introduced in the context
of MLR, but when performing PCR there are a large number of
methods for calculating errors, so we will expand on the
techniques in this section.Fig. 6 Principles of PCA.
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The simplest method is to determine the sum of square of
residuals between the true and predicted concentrations

S c cc in in

i
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= -
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Â( ˆ )2

1

where 
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an=
=

Â
1

for compound n using a principal components. The larger this
error, the worse the prediction, and the error reduces as more
components are calculated.

Often the error is reported as a root mean square error
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Notice that, strictly, the error should be divided by I 2a rather
than I (for uncentred data) to account for the loss of degrees of
freedom as successive components are calculated. Some
investigators, do, however use simply the number of spectra and
neglect to adjust for the number of PCs. Provided that I is
considerably larger than a this adjustment is not very im-
portant.

This error can also be reported as a percentage,

E% = 100 E/c̄n

where c̄n is the mean concentration.
It is also possible to report errors in terms of quality of

modelling of spectra (or chromatograms), often called the x
block error.

The quality of modelling of the spectra using PCA (the x 
variance) can likewise be calculated as follows:
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However, this error also can be expressed in terms of
eigenvalues or scores, so that
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for A principal components.
These can be converted to root mean square errors as

above,

E S I Jx= / .

Notice that it is normal to divide by I.J ( = 40 3 51 = 2040) in
this case rather than adjusting for the degrees of freedom
because I.J is a comparatively large number; however, it is
necessary to check each author and software package very
carefully before reporting results.

The percentage root mean square error may be defined by (for
uncentred data)

E% = 100 E/x̄

Note that if x is centred, the divisor is usually defined by
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where x̄j is the average of all the

measurements for the samples for variable j: obviously there are
several other ways of defining this error; again each investigator
has his or her own favourites.

Note that the x block error depends only on how many PCs
have been used in the model, but the error in the c block depends
also on the specific compound, there being a different
percentage error for each compound in the mixture. For 0 PCs,
the estimates of the PCs and concentrations are simply 0 (or the
mean if the data have been centred). The graphs of errors for

Table 9 Scores for ten PCs for the dataset of case study 1

Spectrum PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

1 6.066 0.032 0.098 20.002 0.048 0.037 0.011 0.003 0.033 20.003
2 8.040 20.155 20.481 20.001 0.069 0.007 20.051 0.016 0.077 20.005
3 6.261 20.064 0.261 20.212 20.373 0.086 20.080 0.043 0.025 20.015
4 5.877 0.606 0.119 0.061 0.117 0.120 20.007 20.012 20.031 20.026
5 6.928 0.072 0.012 0.399 0.164 0.009 20.009 0.069 0.037 0.016
6 7.587 0.101 20.188 20.075 20.042 20.044 20.017 20.026 20.096 0.009
7 4.320 0.373 0.667 20.148 0.214 0.002 0.023 0.073 0.008 0.010
8 6.491 20.290 0.302 0.296 20.161 0.026 0.035 20.023 0.024 20.080
9 5.651 20.117 20.295 20.145 0.182 0.166 0.018 0.014 0.020 0.013

10 6.657 20.979 0.360 0.053 0.157 0.090 20.005 0.022 20.060 0.041
11 4.442 0.845 0.051 20.209 0.226 0.055 20.072 20.037 0.005 0.015
12 3.612 0.542 20.083 0.213 20.265 0.092 0.045 0.020 0.000 0.021
13 4.144 0.493 0.005 0.354 20.119 20.077 20.100 0.042 20.039 20.003
14 3.657 0.163 0.287 20.152 0.014 0.000 0.071 0.057 20.051 20.021
15 5.666 0.200 20.042 0.294 0.356 20.089 0.079 20.078 0.013 0.009
16 5.566 20.582 20.277 20.158 20.129 20.146 0.009 0.059 0.028 0.036
17 4.775 0.039 0.067 20.412 20.087 0.001 0.042 20.026 20.009 20.022
18 4.174 20.034 0.069 0.035 20.011 0.000 0.049 0.040 0.047 0.007
19 7.023 20.269 20.691 0.090 20.057 0.104 20.027 20.046 20.036 0.008
20 5.735 0.458 0.073 20.105 20.130 20.083 0.021 20.001 20.002 0.078
21 5.620 0.277 0.297 0.190 20.071 20.118 20.059 20.019 20.012 20.011
22 5.266 0.999 20.461 20.158 20.137 20.048 0.081 0.013 0.004 20.026
23 7.060 20.677 20.117 0.115 20.143 20.025 0.076 0.011 20.037 20.009
24 7.805 20.411 20.118 20.289 0.293 20.129 20.056 0.007 20.005 20.055
25 7.332 20.243 0.523 20.076 20.193 20.009 20.005 20.138 0.045 0.028
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both the concentration estimates of pyrene and spectra as
increasing numbers of PCs are calculated are given in Fig. 7.
Although the x error graph declines steeply, which might falsely
suggest only a small number of PCs are required for the model,
the c error graph exhibits a much gentler decline. Some
chemometricians prefer to plot the graph of ‘variances’; these
are the mean square error if the data have been centred, and
these graphs are presented either as percentage variance
remaining (or explained by each PC) or, for the x block, by
eigenvalues. Fig. 8 shows how the prediction for pyrene for
dataset A of case study 1 improves with increasing PCs.

If the concentration of some or all the compounds are known
PCR can be extended simply by replacing the vector ck with a
matrix C, each column corresponding to a compound in the
mixture, so that 

C ≈ T . R

so that

R = (TA. T)21. TA. C

The number of PCs must be at least equal to the number of
compounds of interest in the mixture. If the number of PCs and
number of significant compounds in the mixture are equal, so
that, in this example, T and C are 25 3 10 matrices, then R is a
square matrix and

X = T.P = T.R.R.21.P = Ĉ.Ŝ

hence, by calculating R21.P it is possible to determine the
estimated spectrum of each individual component without
knowing this information in advance, and by calculating T.R
concentration estimates can be obtained Table 11. provides the
concentration estimates using PCR with ten significant compo-

nents. The percentage mean square error of prediction (equal-
ling the square root sum of squares of the errors of prediction
divided by 15—the number of degrees of freedom which equals
25 — 10  to account for the number of components in the model,
and not by 25) for all ten compounds is also presented, and, on
the whole, is slightly better than that using MLR.

2.4 Partial least squares

PLS is often regarded as the major regression technique for
multivariate data. In fact in many cases it is applied in-
appropriately and is not justified by the data. In areas outside
mainstream analytical chemistry such as QSAR, or even
biometrics and psychometrics, PLS certainly is an invaluable
tool, because the underlying factors have little or no physical
meaning so a linearly additive model in which each underlying
factor can be interpreted chemically is not expected. In
spectroscopy or chromatography we usually expect linear
additivity, and this is especially the case in analytical chemistry
calibration. Nevertheless, PLS can be a useful tool when there
is partial knowledge of the data, an excellent example being the
measurement of protein in wheat by NIR spectroscopy.6,7

Under such conditions, the model will be obtained from a series
of wheat samples, and PLS will try to use typical features in this
dataset to establish a relationship with the known amount of
protein. Unlike MLR it does not require an exact model of all
components in the data. PLS models can be very robust
provided that future samples contain similar features to the

Table 10 Rotation vector for pyrene

0.076
0.209
0.309
0.291
0.830
20.517
20.395

0.878
21.229
20.363

Fig. 7 Error for PCR estimates of pyrene as increasing number of
components are employed.

Fig. 8 Predicted concentrations for pyrene using PCR as one, five and ten
principal components are calculated.
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original data, but predictions are essentially statistical. An
example might be the determination of vitamin C in orange
juices using spectroscopy: a very reliable PLS model could be
obtained using orange juices from a particular region of Spain,
but what if some Brazilian orange juice is included? There is no
guarantee that the model will perform well on the new data, as
there may be different spectral features. The originators of PLS
are well aware of the shortcomings as well as the successes of
the method, but it is important for the analytical chemist to be
very alert to potential pitfalls.

One important practical aspect of PLS is that it takes into
account errors both in the concentration estimates and spectra.
A method such as PCR will assume that the concentration
estimates are error free. Much traditional statistics rest on this
assumption, that all errors are in the dependent variables
(spectra). If in medicine it is decided to determine the
concentration of a compound in the urine of patients as a
function of age, it is assumed that age can be estimated exactly,
the statistical variation being in the concentration of a
compound and the nature of the urine sample. Yet in chemistry
there are often significant errors in sample preparation, for
example, accuracy of weighings and dilutions and so the
independent variable (c) in itself also contains errors. With
modern spectrometers, these are sometimes larger than spectro-
scopic errors. One way of overcoming this difficulty is to try to
minimise the covariance between both types of variables,
namely the x (spectroscopic) and c (concentration) variables.

2.4.1 PLS1 method. The most widespread approach is often
called PLS1. Although there are several algorithms, the main
ones being due to Wold14 and Martens,31 the overall principles
are straightforward. Instead of modelling exclusively the x
variables, two sets of models are obtained, of the form

X = T.P + E

c = T.q + f

where q is analogous to a loadings vector, although is not
normalised. These matrices are represented in Fig. 9. Hence the

product of T and P approximates to the spectral data and the
product of T and q to the true concentrations. An important
feature of PLS is that it is possible to obtain a scores matrix that
is common to both the concentrations (c) and measurements (x).
The sum of squares of the scores of each successive component
is often called an eigenvalue, note that the PLS eigenvalues will
not be the same as the PCA eigenvalues, and depend both on the
x and c blocks.

There are a number of alternative ways of presenting the PLS
regression equations in the literature, all, in practice, equivalent.
In the models above, there are three arrays T, P and q and a
conventional analogy to PCA sets P as a matrix, each of whose
rows has a sum of squares equal to 1. From this the magnitude
of T follows, which determines q. Some packages calculate a
vector proportional to q, which is also normalised, in analogy to
a loadings vector. In such a situation, the second equation
becomes a product of three arrays, the first one proportional to
T, the second one a diagonal matrix consisting of scaling
factors, and the third one a normalised vector proportional to q.
It is also possible to convert both equations to products of three
arrays, but the models used in this paper have the simplicity of
a single scores matrix, with the disadvantage of a vector q that
is not normalised.

For a dataset consisting of 25 spectra observed at 131
wavelengths, for which eight PLS components are calculated,
there will be: a T matrix of dimensions 25 3 8; a P matrix of
dimensions 8 3 131; an E matrix of dimensions 25 3 131; a q
vector of dimensions 8 3 1 and an f vector of dimensions 25 3
1.

Each successive PLS component approximates both the
concentration and spectral data better. For each component,
there will be a: spectral scores vector t; spectral loadings vector
p and concentration loadings scalar q.

The approximation to the concentration as successive PLS
components are calculated is simply the sum of t.q for each
successive component. This approach is possible in PLS1
because each successive component is orthogonal.

In case study 1, there are ten compounds, so it is possible to
perform PLS1 separately on each of the ten compounds. In each
case it is possible compute several PLS components, if 15 were

Table 11 Predictions of concentrations using PCR and ten significant components as discussed in Section 2.3.2

Polyarene conc./mg L21

Spectrum Py Ace Anth Acy Chry Benz Fluora Fluore Nap Phen

1 0.475 0.108 0.185 0.150 0.374 1.644 0.156 0.532 0.110 0.494
2 0.422 0.054 0.322 0.132 0.465 2.712 0.161 0.473 0.146 0.631
3 0.170 0.175 0.274 0.191 0.559 1.657 0.081 0.824 0.153 0.207
4 0.700 0.178 0.244 0.160 0.346 1.114 0.126 0.788 0.050 0.678
5 0.803 0.131 0.283 0.163 0.214 2.132 0.163 0.279 0.188 0.537
6 0.601 0.201 0.162 0.085 0.424 2.214 0.073 0.951 0.139 1.003
7 0.786 0.144 0.115 0.140 0.466 0.482 0.150 0.520 0.158 0.185
8 0.428 0.118 0.193 0.195 0.066 2.160 0.167 1.103 0.078 0.319
9 0.311 0.122 0.202 0.107 0.410 1.654 0.148 0.190 0.034 0.467

10 0.590 0.213 0.047 0.120 0.332 2.701 0.079 0.219 0.087 0.222
11 0.610 0.077 0.191 0.109 0.571 0.488 0.072 0.393 0.046 0.671
12 0.147 0.158 0.203 0.139 0.110 0.523 0.107 0.288 0.108 0.654
13 0.587 0.116 0.240 0.086 0.099 1.120 20.011 0.537 0.160 0.490
14 0.459 0.165 0.077 0.075 0.239 0.565 0.119 0.793 0.114 0.269
15 0.765 0.030 0.055 0.094 0.118 1.653 0.179 0.373 0.072 0.934
16 0.136 0.058 0.102 0.037 0.351 2.146 0.103 0.320 0.223 0.389
17 0.176 0.102 0.075 0.087 0.465 1.021 0.126 0.883 0.072 0.468
18 0.285 0.075 0.132 0.111 0.218 1.106 0.151 0.294 0.129 0.301
19 0.198 0.141 0.229 0.084 0.253 2.626 0.072 0.415 0.034 0.878
20 0.421 0.142 0.114 0.122 0.513 1.108 0.120 0.327 0.221 0.960
21 0.657 0.094 0.159 0.130 0.267 1.541 0.061 0.804 0.158 0.582
22 0.313 0.109 0.253 0.088 0.331 0.541 0.187 1.008 0.158 1.032
23 0.312 0.171 0.109 0.103 0.141 2.661 0.148 0.771 0.142 0.582
24 0.750 0.049 0.170 0.052 0.528 2.723 0.118 1.115 0.126 0.385
25 0.304 0.094 0.045 0.224 0.556 2.181 0.140 0.626 0.090 0.776

E% 7.61 29.52 18.39 42.46 9.52 3.18 38.75 20.15 25.12 19.36
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calculated for each compound, there will be 150 PLS compo-
nents in total.

In most implementations of PLS it is conventional to centre
both the x and c data, by subtracting the mean of each column
before analysis. In fact, there is no general scientific need to do
this. Many spectroscopists and chromatographers perform PCA
uncentred; however, many early applications of PLS (e.g.
outside chemistry) were of such a nature that centring the data
was appropriate. Much of the history of PLS in analytical
chemistry relates to applications in NIR spectroscopy, where
there are specific spectroscopic problems, such as due to
baselines, which, in turn would favour centring. However, as
generally applied to analytical chemistry, uncentred PLS is
perfectly acceptable. Below, though, we review the most
widespread implementation for the sake of compatibility with
the most common computational implementations of the
method.

For a given compound, the remaining percentage error in the
x matrix for A PLS components can be expressed in a variety of
ways (see Section 2.3). Note that there are slight differences
according to authors that take into account the number of
degrees of freedom left in the model. The predicted measure-
ments simply involve calculating X̂ = T.P and adding on the
column averages where appropriate, and error indicators in the
x block can be expressed identically with those for PCA and can
be calculated, see Section 2.3.2. The only difference is that each
compound generates a separate scores matrix, unlike PCR
where there is a single scores matrix for all compounds in the
mixture.

The concentration is predicted by

ĉ t q cin ian an

a

A

i= +
=

Â
1

or, in matrix terms

cn = Tn qn + c̄n

where c̄n is a vector of the average concentration. Hence the
scores of each PLS component are proportional to the
contribution of the component to the concentration estimate.
The method of the concentration estimation for two PLS
components and pyrene is presented in Table 12.

The mean square error in the concentration estimate can be
computed just as in PCR, although the value of ĉin will differ. It
is also possible to provide a number of equivalent equations for
this error using t and q which are left to the reader. In the case
of the concentration estimates, it is usual to adjust the sum of
squares according to the number of PLS components, because
this number is often similar in magnitude to the number of
objects in the dataset; for example, there are 25 spectra in case
study 1, but we might want to look at the error when ten PLS
components are calculated. These error terms will also be
discussed in Section 3.1. Note an interesting difference between
the conventional equations for errors in the x and c data blocks:
in the former the mean is subtracted from the overall sum of

squares since the data are usually mean-centred prior to PLS,
whereas for the latter the raw data are usually used as the mean
concentration is generally added back on to the data so
predictions are expressed in the original concentration units.

These calculations are illustrated for pyrene. Table 13 is of
the first 15 eigenvalues for PLS1 using pyrene as the calibrant.
The total sum of squares of the mean centred spectra is 50.522,
hence the first two eigenvalues account for
100x(38.578+6.269)/50.522 = 88.77% of the overall sum of
squares, giving a root mean square error after two PLS
components have been calculated of

( . . . ) / . . %.50 522 38 578 6 269 50 522 33 51- - =

Table 14 is of the concentration predictions using two
components. The sum of squares of the errors is 0.376. Dividing
this by 22 and taking the square root leads to a root mean square
error of 0.131 mg L21. The average concentration of pyrene is
0.456 mg L21. Hence the percentage root mean square error is
28.81%.

It is important to recognise that the percentage error of
prediction in concentration may be different to the percentage
error of prediction of the original spectra.

Fig. 9 Principles of PLS1.

Table 12 Calculation of concentration using two PLS components for
pyrene and case study 1, dataset A. Note that the concentration estimated is
mean-centred

Component
1
scores

q = 0.0607;
conc. est.
(ti1q)

Component
2
scores

q = 0.318;
conc. est.
(ti2q)

Centred
conc. est.
(ti1q + ti2q)

0.333 0.020 0.127 0.040 0.060
1.999 0.121 20.301 20.096 0.026
0.147 0.009 20.352 20.112 20.103
0.570 0.035 0.775 0.246 0.281
1.504 0.091 0.529 0.168 0.259
1.743 0.106 0.011 0.004 0.109
20.881 20.053 0.869 0.276 0.223

0.679 0.041 20.020 20.006 0.035
20.428 20.026 20.370 20.118 20.144

0.659 0.040 20.389 20.124 20.084
20.894 20.054 0.759 0.241 0.187
22.335 20.142 20.091 20.029 20.171
21.511 20.092 0.277 0.088 20.004
22.159 20.131 0.021 0.007 20.124

0.305 0.019 0.605 0.192 0.211
21.028 20.062 21.109 20.352 20.415
21.364 20.083 20.402 20.128 20.211
21.813 20.110 20.242 20.077 20.187

0.601 0.037 20.833 20.265 20.228
0.032 0.002 0.247 0.079 0.080
0.130 0.008 0.484 0.154 0.162
20.544 20.033 0.184 0.058 0.025

0.728 0.044 20.765 20.243 20.199
1.933 0.117 20.124 20.039 0.078
1.592 0.097 0.110 0.035 0.132

Table 13 First 15 eigenvalues using PLS1 for pyrene and case study 1

38.578
6.269
2.563
1.697
0.624
0.536
0.081
0.048
0.0146
0.0261
0.0247
0.0159
0.0094
0.0026
0.0056
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The root mean square percentage errors for modelling both
spectra and concentrations of pyrene are presented in Fig. 10.
Often these are plotted using a logarithmic scale for clarity.
Fourteen components are required to obtain an error of
prediction of concentration of less than 1%, whereas only 21 are
needed to reach this for the spectral data. It is important to notice
that there is not a sharp cut-off at ten components. If the number
of compounds in the mixture spectra are unknown, it would not
be at all obvious how complex the mixture is. Below we will
discuss methods for determining the optimum number of
components. The prediction error for pyrene using PLS1 and ten
significant components, in this case, is considerably better than
that using PCR, 3.40% as opposed to 7.61%. However, these
raw errors are not always very useful indicators.

Fig. 11 represents the same data for acenaphthylene. Whereas
the x block modelling error is fairly similar to that of pyrene, the
concentration is modelled much less well, a consequence of the
substantial spectral overlap and lack of significant features.

The errors using ten PLS components are summarised in
Table 15, and are better than PCR in this case. There is,
however, an important philosophical consideration about what
is a better prediction; although the measured c or concentration
variables are obtained with greater accuracy, it is essential to
recognise that there could be errors, in turn, in these concentra-

tion measurements, so PLS could simply be predicting poorer
concentration estimates more accurately because the algorithm
takes into account the c as well as x values. There is no easy
answer.

2.4.2 PLS2 method. An extension to PLS1 was suggested
some 15 years ago, often called PLS2. In fact there is little
conceptual difference, except that the latter allows the use of a
concentration matrix, C rather than concentration vectors for
each individual compound in a mixture, and the algorithm (see
Appendix A2.2) is iterative. The equations above are altered
slightly in that Q becomes a matrix not a vector. The number of
columns in C and Q are equal to the number of compounds of
interest. PLS1 requires one compound to be modelled at a time,
whereas in PLS2 all known compounds can be included in the
model.

It is a simple extension to predict all the concentrations
simultaneously, the PLS2 predictions, together with root mean
square errors being given in Table 16. Note that there is now
only one set of scores and loadings for the x (spectroscopic)
dataset, and one set of eigenvalues common to all ten
compounds. However, the concentration estimates are different
when using PLS2 to PLS1. In this way PLS differs from PCR
where it does not matter if each variable is modelled separately
or all together. The reasons are rather complex but relate to the
fact that for PCR the principal components are calculated
independently of how many concentration variables are used in
the regression; however, the PLS components are influenced by
the concentration variable.

In some cases PLS2 is helpful, especially since it is easier to
perform computationally. Instead of obtaining ten independent
models, one for each PAH, in this example, we can analyse all
the data in one go. However, in many situations PLS2
concentration estimates are, in fact, worse than PLS1 estimates,
so a good strategy might be to perform PLS2 as a first step,
which could provide further information such as which
wavelengths are significant and which concentrations can be
determined with a high degree of confidence, and then perform
PLS1 individually for the most appropriate compounds.

2.5 Multiway methods

Two way data such as DAD-HPLC, LC-MS and LC-NMR are
increasingly common in analytical chemistry, especially with
the growth of coupled chromatography. Conventionally either a
univariate parameter (e.g. a peak area at a given wavelength)
(methods of Section 2.1) or a chromatographic elution profile at
a single wavelength (methods of Sections 2.2–2.4) is used for
calibration, allowing the use of standard regression techniques
described above. However, additional information has been
recorded for each sample, often involving both an elution

Table 14 Concentration predictions (in mg L21) for pyrene together with
associated errors after two PLS components have been computed. Note that
the mean has now been added back to the data

Prediction Error

0.516 0.060
0.482 0.026
0.353 0.201
0.737 20.023
0.715 20.045
0.565 20.043
0.679 20.081
0.491 0.035
0.312 0.008
0.372 20.236
0.643 0.035
0.285 0.133
0.452 20.156
0.332 20.124
0.667 20.093
0.041 20.111
0.245 0.093
0.269 20.035
0.228 0.076
0.536 0.080
0.618 0.010
0.481 0.177
0.257 20.047
0.534 20.226
0.588 0.284

Fig. 10 Root mean square errors for prediction of spectra and concentra-
tion of pyrene using PLS1 as successive number of components are
employed.

Fig. 11 Root mean square errors for prediction of spectra and concentra-
tion of acenaphthylene using PLS1 as successive number of components are
employed.
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profile and a spectrum. A series of two way chromatograms are
available, and can be organised into a three-way array often
visualised as a box. Each level of the box consists of a single
chromatogram. Sometimes these three-way arrays are called
“tensors” but tensors often have special properties in physics
which are unnecessarily complex and confusing to the chem-
ometrician. We will refer to tensors only where it helps
understand the existing methods.

Enhancements of the standard methods for multivariate
calibration are required. Although it is possible to use methods
such as three- way MLR, most chemometricians have concen-

trated on developing approaches based on PLS, which we will
be restricted to below. The data will be illustrated using case
study 2.

2.5.1 Unfolded calibration. One of the simplest methods is
to create a single, long, data matrix from the original three way
tensor. In case study 2, we take 14 samples each recorded at 40
elution times and 51 wavelengths, arranged as a 14 3 40 3 51
tensor. It is possible to change the shape so that each individual
time/wavelength combination is a single variable, for example,
the intensity at 242.4 nm and 9 s is represented by a single vector

Table 15 Prediction of concentrations for the ten PAHs, using PLS1, and ten PLS components

Polyarene conc./mg L21

Spectrum Py Ace Anth Acy Chry Benz Fluora Fluore Nap Phen

1 0.438 0.133 0.158 0.123 0.340 1.636 0.118 0.614 0.116 0.601
2 0.462 0.043 0.282 0.210 0.447 2.709 0.116 0.382 0.153 0.749
3 0.155 0.195 0.280 0.162 0.559 1.623 0.083 0.813 0.160 0.187
4 0.729 0.183 0.219 0.195 0.336 1.108 0.115 0.781 0.042 0.761
5 0.788 0.170 0.279 0.114 0.222 2.119 0.165 0.182 0.169 0.548
6 0.608 0.211 0.175 0.059 0.452 2.168 0.055 0.811 0.116 0.931
7 0.760 0.113 0.119 0.168 0.439 0.552 0.176 0.620 0.197 0.174
8 0.471 0.086 0.229 0.174 0.114 2.124 0.129 0.985 0.038 0.180
9 0.305 0.158 0.230 0.033 0.449 1.611 0.194 0.180 0.022 0.370

10 0.605 0.169 0.050 0.159 0.334 2.732 0.053 0.200 0.084 0.210
11 0.625 0.028 0.228 0.130 0.575 0.512 0.051 0.402 0.037 0.548
12 0.155 0.156 0.179 0.189 0.099 0.539 0.095 0.289 0.119 0.736
13 0.591 0.115 0.275 0.045 0.122 1.094 0.030 0.560 0.151 0.388
14 0.471 0.203 0.060 0.051 0.232 0.526 0.125 0.779 0.084 0.351
15 0.755 0.038 0.057 0.081 0.113 1.630 0.155 0.415 0.073 0.938
16 0.148 0.026 0.114 0.038 0.340 2.167 0.058 0.399 0.193 0.364
17 0.157 0.094 0.050 0.115 0.447 1.047 0.072 0.973 0.081 0.573
18 0.296 0.058 0.157 0.139 0.218 1.100 0.191 0.381 0.140 0.220
19 0.151 0.118 0.221 0.088 0.219 2.695 0.088 0.613 0.056 0.936
20 0.460 0.159 0.115 0.101 0.552 1.075 0.123 0.194 0.192 0.935
21 0.609 0.080 0.111 0.188 0.216 1.615 0.041 1.015 0.203 0.762
22 0.305 0.092 0.272 0.079 0.336 0.563 0.211 0.980 0.169 0.962
23 0.303 0.179 0.117 0.134 0.122 2.693 0.205 0.794 0.188 0.550
24 0.756 0.076 0.170 0.036 0.551 2.691 0.166 1.049 0.130 0.378
25 0.297 0.118 0.053 0.189 0.566 2.171 0.183 0.589 0.083 0.750

E% 3.403 10.950 4.496 11.638 2.675 1.582 14.857 5.821 9.328 3.643

Table 16 Prediction of concentration for the ten PAHs using PLS2, and ten PLS components

Polyarene conc./mg L21

Spectrum Py Ace Anth Acy Chry Benz Fluora Fluore Nap Phen

1 0.477 0.111 0.175 0.145 0.367 1.660 0.149 0.563 0.097 0.520
2 0.434 0.071 0.313 0.116 0.475 2.701 0.156 0.402 0.139 0.647
3 0.172 0.177 0.278 0.184 0.564 1.650 0.084 0.797 0.149 0.187
4 0.701 0.185 0.231 0.159 0.344 1.121 0.119 0.767 0.046 0.715
5 0.813 0.146 0.281 0.144 0.230 2.111 0.163 0.170 0.179 0.522
6 0.602 0.214 0.156 0.085 0.435 2.189 0.073 0.840 0.149 1.011
7 0.785 0.138 0.119 0.133 0.464 0.486 0.152 0.541 0.145 0.160
8 0.423 0.113 0.210 0.197 0.077 2.151 0.179 1.066 0.095 0.271
9 0.310 0.115 0.216 0.109 0.413 1.648 0.155 0.201 0.040 0.430

10 0.590 0.213 0.044 0.125 0.332 2.700 0.076 0.214 0.088 0.236
11 0.603 0.061 0.207 0.121 0.570 0.490 0.079 0.440 0.058 0.635
12 0.151 0.158 0.197 0.142 0.105 0.531 0.101 0.329 0.108 0.683
13 0.583 0.101 0.256 0.099 0.096 1.120 20.004 0.599 0.173 0.462
14 0.463 0.168 0.071 0.079 0.236 0.568 0.115 0.813 0.118 0.301
15 0.762 0.026 0.056 0.102 0.111 1.660 0.180 0.419 0.078 0.944
16 0.135 0.044 0.113 0.039 0.350 2.160 0.103 0.383 0.218 0.362
17 0.175 0.099 0.068 0.096 0.452 1.040 0.120 0.963 0.074 0.510
18 0.282 0.058 0.149 0.114 0.213 1.114 0.159 0.376 0.129 0.255
19 0.187 0.128 0.223 0.097 0.233 2.655 0.067 0.531 0.029 0.907
20 0.429 0.154 0.110 0.113 0.527 1.088 0.117 0.226 0.218 0.961
21 0.653 0.090 0.142 0.135 0.245 1.577 0.048 0.919 0.143 0.642
22 0.311 0.109 0.258 0.082 0.337 0.533 0.193 0.966 0.156 1.004
23 0.309 0.172 0.109 0.104 0.139 2.656 0.151 0.765 0.141 0.577
24 0.749 0.052 0.170 0.051 0.529 2.719 0.121 1.100 0.132 0.385
25 0.301 0.095 0.046 0.228 0.557 2.174 0.143 0.606 0.098 0.776

E% 7.398 26.813 12.068 42.827 7.495 2.711 36.921 10.768 30.415 13.640
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of length 14. This new matrix now contains 40 3 51 = 2040
variables and is the unfolded form of the original data matrix.
This operation is illustrated in Fig. 12 .

It is now a simple task to perform PLS (or indeed any other
multivariate approach), as discussed above. The 2040 variables
are centred and the prediction of the concentration of 3-hydrox-
ypyridine when three PLS components are employed is given in
Fig. 13. The error of prediction of the concentration of
3-hydroxypyridine is presented in Fig. 14 for increasing number
of components. Notice that several graphs could be produced of
the effectiveness of the model, ranging from the eigenvalues
(related to the x variables), to the percentage prediction error in
the concentration variables, and the percentage of the chromato-
graphic data modelled by each successive component. It is
interesting that three PLS components appear to be required to
give a good model, even though there are only two compounds
in this region of the chromatogram (the major one and the
impurity). There could be other factors such as noise that are
modelled by these PLS components.

It is possible to improve the method by scaling the data, but
it is important to be very careful to think about the consequences
of the various methods employed. It is sometimes possible to
scale first the two way data and then unfold. However, a final
centring should normally be performed on the unfolded matrix.
In addition, variable selection can have a significant influence
on the effectiveness of unfolded PLS models, since not all the
2040 variables are going to be particularly relevant or
informative.

2.5.2 Trilinear PLS1. Some of the most interesting theoret-
ical developments in chemometrics over the past few years have
been in so-called ‘multiway’ or ‘multimode’ data analysis.32–35

Many such methods have been available for some years,
especially in the area of psychometrics, and a few do have
relevance to analytical chemistry. It is important, though, not to
get too carried away with the excitement of these novel
theoretical approaches. Only limited data are of sufficient
quality and completeness for the application of genuine
multiway methods, two main sources, in analytical chemistry
calibration, being coupled chromatography and fluorescence
excitation–emission spectroscopy. We will restrict the discus-
sion in this paper to trilinear PLS1, involving a three-way x
block and a single c variable. If there are several known
calibrants, the simplest approach is to perform trilinear PLS1
individually on each variable.

Centring can be complex for three-way data, and there is no
inherent reason to do this, therefore, for simplicity, in this
section no centring is used, so raw concentrations and
chromatographic/spectroscopic measurements are employed.

The experimental data of case study 2 can be considered to be
arranged in the form of a cube, with three dimensions, I for the
number of samples, and J and K for the measurements. For case
study 2, there are: I = 14 samples; J = 40 sampling times in
HPLC and K = 51 wavelengths.

Trilinear PLS1 attempts to model both the x and c blocks
simultaneously. In this review we will illustrate the use with the
algorithm of Appendix A2.4, based on methods proposed by de
Jong36 and Bro.33

Superficially, trilinear PLS1 has many of the same objectives
as normal PLS1, and the method is often represented dia-
grammatically as in Fig. 15, replacing ‘squares’ or matrices by
‘boxes’ or tensors, and replacing, where necessary, the dot
product (‘.’) by something called a tensor product (‘#’). In fact,
as we shall see, this is an oversimplification, and is not an
entirely accurate description of the method.

In trilinear PLS1, for each component it is possible to
determine: a scores vector (t), of length I or 14 in this example;
a weight vector, which has analogy to a loadings vector (jp) of
length J or 40 in this example, referring to one of the dimensions
(e.g. time), whose sum of squares equals 1, and another weight
vector, which has analogy to a loadings vector (kp) of length K
or 51 in this example, referring to the other one of the
dimensions (e.g. wavelength) whose sum of squares also equals
1.

Superficially these vectors are related to scores and loadings
in normal PLS, but in practice they are different, a key reason
being that these vectors are not orthogonal in trilinear PLS1,
influencing the additivity of successive components. In this
paper, we keep the notation scores and loadings, simply for the
purpose of compatibility with the rest of this article.

In addition, a vector q is determined after each new
component, by

q = (TA.T)21.TA.c

so that

ĉ = T.q

or

c = T.q + f

where T is the scores matrix, whose columns consist of the
individual scores vectors for each component and has dimen-
sions I 3 A or 14 3 3 in this example, if three PLS components
are computed, and q is a column vector of dimensions A3 1 or
3 3 1.

A key difference from bilinear PLS1 is that the elements of q
have to be recalculated afresh as new components are
computed, whereas for two-way PLS, the first element of q, is
the same no matter how many components are calculated. This
limitation is a consequence of non-orthogonality of components
in the algorithms conventionally applied. Therefore, the
concentration estimates are best expressed in matrix terms and
not so easily as summations.

The x block residuals after each component are computed
conventionally by

resid,axijk = resid,a21x 2 ti j pj
k pk

where resid,axijk is the residual after a components have been
calculated, which would lead to a model

Fig. 12 Unfolding a data matrix.
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Sometimes these equations are written as tensor products, but
there are a large number of ways of multiplying tensors
together, so this notation can be confusing.

However, tensors are simply methods for rearranging the
data, and it is often conceptually more convenient to deal
directly with vectors and matrices, just as in Section 2.5.1 by
unfolding the data. This procedure can be called matricisa-
tion.

In mathematical terms we can state that

unfolded unfoldedX t pˆ .=
=

Â a a

a

A

1

where unfoldedpa is simply a row vector of length J.K. Where
trilinear PLS1 differs from unfolded PLS described in Section
2.5.1, is that a matrix Pa of dimensions J 3 K can be obtained
for each PLS component and is given by

Pa = jpa.kpa

and Pa is unfolded to give unfoldedpa.

Fig. 16 represents this procedure, avoiding tensor multi-
plication, using conventional matrices and vectors together with
unfolding. A key problem with the common implementation of
trilinear PLS1 is that, since the scores and loadings of
successive components are not orthogonal, the methods for
determining residuals in simply an approximation. Hence the x
block residuals do not have a direct physical meaning. It also
means that there are no obvious analogies to eigenvalues. This
means that it is not easy to determine the size of the components
or the modelling power using the x scores and loadings, but,
nevertheless, the concentration (or c block) is modelled well.
Since the prime aim of calibration is to predict concentrations
rather than spectra or chromatograms, trilinear PLS1 is
adequate, provided that care is taken to interpret the output.

In order to understand this method further, a small simulated
example is given in Table 17, consisting of a 4 3 5 3 6 array,
originating from three compounds, whose concentrations are
also presented. No noise is added, so that there should be an
exact model after three PLS components. Trilinear PLS1 is
performed on the first compound. The main results for the first
compound are given in Table 18. It can be seen that three
components provide an exact model of the concentration, but
there is still an apparent residual error in the x matrix,
representing 2.51% of the overall sum of squares of the data
( = 4.03 3 107): this error has no real physical or statistical
meaning, except that it is small. Despite this, it is essential to
recognise that the concentration has been modelled well, so for
the purpose of calibration the algorithm has performed well.

The application will be illustrated by the example of case
study 2. The values of t, jp, kp and q for each successive
component, are given in Table 19. The data are not centred. The
predicted concentrations, formed by multiplying T and q, are
given in Table 20. The first component contributes very little to
the concentration estimate, most concentration estimates being

Fig. 13 Predicted versus true concentrations of 3-hydroxypyridine (case
study 2), using 3 PLS components and an unfolded data matrix as discussed
in Section 2.5.1.

Fig. 14 Error in response of the first 10 PLS components for the data
discussed in Section 2.5.1.

Fig. 15 Principles of three way PLS.
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extremely close to the average. This is because the impurity is
in a small proportion and the data are uncentred, so the first
component reflects primarily the overall chromatogram. At
least three components are required for a sensible estimate of
concentration.

The residual sum of squares from the x block might, at first
glance, suggest a very different story and are presented in Table
21. Note that the first component accounts for by far the largest
sum of squares, but the concentration is modelled very poorly
using only one component, hence the x residuals do not provide
very good information about the number of PLS components
required to model the data adequately. It is important, also to be
careful when interpreting these numbers as they are not true
eigenvalues, unlike for bilinear PLS1.

A beauty of multimode methods is that the dimensions of c
(or indeed X) can be changed, for example, a matrix C can be
employed consisting of several different compounds, exactly as
in PLS2, or even, a tensor. It is possible to define the number of
dimensions in both the x and c blocks, for example, a three way
x block and a two way c block may consist of a series of two-
way chromatograms each containing several compounds.
However, unless one has a good grip of the theory or there is a
real need from the nature of the data, it is best to reduce the
problem to one of trilinear PLS1: for example a concentration
matrix C can be treated as several concentration vectors, in the
same way that a calibration problem that might appear to need
PLS2 can be reduced to several calculations using PLS1.

Whereas there has been a huge interest in multimode
calibration in the theoretical chemometrics literature, there are
important limitations to the applicability of such techniques.
Good, very high order, data are rare in analytical chemistry.
Even three-way calibration, such as in DAD-HPLC, has to be
used cautiously as there are frequent experimental difficulties
with exact alignments of chromatograms in addition to
interpretation of the numerical results. However, there have
been some significant successes in areas such as sensory
research and psychometrics.

3 Model validation

Unquestionably one of the most important aspects of all
calibration methods is model validation. Numerous questions
need to be answered.

1. How many significant components are needed to charac-
terise a dataset?

2. How well is an unknown predicted?

3. How representative are the data used to produce a
model?

It is possible to obtain as close a fit as desired using more and
more PLS or PCA components, until the raw data are fitted
exactly; however, the later components are unlikely to be
physically meaningful. There is a large literature on how to
decide what model to adopt which requires an appreciation of
model validation, experimental design and how to measure
errors. Most methods aim to guide the experimenter as to how
many significant components to retain. The methods are
illustrated below with reference to PLS1 for brevity, but similar
principles apply to all calibration methods, including those
obtained using MLR, PCR, PLS2 and trilinear PLS1.

3.1 Autoprediction

The simplest approach to determining the number of significant
components is by measuring the autoprediction error. This is
also called the root mean square error of calibration. Usually
(but not exclusively) the error is calculated on the concentration
data matrix (c), and we will restrict the discussion below to
errors in concentration: importantly, similar equations can be
obtained for the x data.

As more components are calculated, the residual error
reduces. There are two ways of calculating this error,

1
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Note that these errors can easily be converted to a percentage
variance or mean square error as described in Sections 2.3 and
2.4.

The value of 2Ecal will always decline in value as more
components are calculated, whereas that of 1Ecal has the
possibility of increasing slightly in size although, in most well
behaved cases, will also reduce with number of components. If
the 1Ecal does increase against component number it is

Fig. 16 Three way calibration using unfolded matrix notation as discussed in Section 2.5.2.
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indicative that there may be problems with the data. The two
autopredictive errors for acenaphthylene, case study 1 and
dataset A are presented in Fig. 17, using PLS1.

The autopredictive error can be used to determine how many
PLS components to use in the model, in a number of ways.

1. A standard cut-off percentage error can be used, for
example, 1%. Once the error has reduced to this cut-off, ignore
later PLS (or PCA) components.

2. Sometimes an independent measure of the noise level is
possible. Once the error has declined to the noise level, ignore
later PLS (or PCA) components.

3. Occasionally the error can reach a plateau. Take the PLS
components up to this plateau.

By plotting the eigenvalues (or errors in modelling the x
block), it is also possible to determine prediction errors for the
x data block. However, the main aim of calibration is to predict
concentrations rather than spectra, so this information, whereas
useful, is less frequently employed in calibration.

Many chemometricians do not like autoprediction as it is
always possible to fit data perfectly simply by increasing the

number of terms (or components) in the model. There is,
though, a difference between statistical and chemical thinking.
A chemist might know (or have a good intuitive feel) for
parameters such as noise levels, and, therefore, in some
circumstances be able to interpret the autopredictive errors
successfully.

3.2 Cross-validation

An important chemometric tool is called cross-validation. The
basis of the method is that the predictive ability of a model
formed on part of a dataset can be tested out by how well it
predicts the remainder of the data.

It is possible to determine a model using I2 1 ( = 24) samples
leaving out one sample (i). How well does this model fit the
original data? Below we describe the method when the data are
centred, the most common approach.

The following steps are used:
1. Centre both the I2 1 ( = 24 in this example) concentrations

and spectra but remember to calculate the means c̄i and x̄i,
involving removing sample i and subtracting these means from
the original data.

2. Perform PLS to give a loadings matrix P for the x data and
a loadings vector q for the c data. Note that the loadings will
differ according to which sample is removed from the
analysis.

Predicting the concentration of an unknown sample is fairly
straightforward.

1. Call the spectrum of sample i xi (a row vector).
2. Subtract the mean of the I 2 1 samples from this to give

xi2 x̄i where x̄i is the mean spectrum excluding sample i.
3. Calculate ti = (xi2 x̄i).p where p are the loadings obtained

from the PLS model using I 2 1 samples excluding sample i.
4. Then calculate cvĉi = ti.q + c̄i which is the estimated

concentration of sample i using the model based on the
remaining (I 2 1) ( = 24 samples), remembering to add on the
mean of these samples again.

Most methods of cross-validation then repeat the calculation
leaving another spectrum out, and so on, until the entire
procedure has been repeated I ( = 25) times over. The root mean
square of these errors is then calculated, as follows

E

c c

Icv
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cv

i

l

I

=
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=
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Table 17 Simulated example for Section 2.5.2

(a) X data
390 421 871 940 610 525
635 357 952 710 910 380
300 334 694 700 460 390
65 125 234 238 102 134

835 308 1003 630 1180 325

488 433 971 870 722 479
1015 633 1682 928 1382 484
564 538 1234 804 772 434
269 317 708 364 342 194

1041 380 1253 734 1460 375

186 276 540 546 288 306
420 396 930 498 552 264
328 396 860 552 440 300
228 264 594 294 288 156
222 120 330 216 312 114

205 231 479 481 314 268
400 282 713 427 548 226
240 264 576 424 336 232
120 150 327 189 156 102
385 153 482 298 542 154

(b) c data (three components)
1 9 10
7 11 8
6 2 6
3 4 5

Table 18 Results of performing trilinear PLS1 (uncentred) on data of Table 17, and using only the first compound in the model

t jp kp q ĉ

RMS
concentration
residuals

RMS of x
“residuals”

Component 1 3135.35 0.398 0.339 0.00140 4.38 20.79 2.35E+06
4427.31 0.601 0.253 6.19
2194.17 0.461 0.624 3.07
1930.02 0.250 0.405 2.70

0.452 0.470
0.216

Component 2 2757.35 20.252 0.381 0.00177 1.65 1.33 1.41E+06
2313.41 0.211 0.259 0.00513 6.21

511.73 0.392 0.692 6.50
245.268 0.549 0.243 3.18

20.661 0.485
0.119

Component 3 2480.37 20.875 20.070 0.00201 1 0.00 1.01E+06
2107.11 20.073 0.263 0.00508 7
2335.17 20.467 0.302 0.00305 6
2215.76 20.087 0.789 3

0.058 0.004
0.461
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Notice that unlike the autoprediction error this term is always
divided by I because each sample in the original dataset
represents a degree of freedom, however many PLS or PCA
components have been calculated and however the data have
been preprocessed.

For acenaphthylene using PLS1, the cross-validated error is
presented in Fig. 18. An immediate difference between
autoprediction and cross-validation is evident. In the former
case the data will always be better modelled as more
components are employed in the calculation, so the error will
always reduce (with occasional rare exceptions in the case of
1Ecal). However, cross-validated errors normally reach a
minimum as the correct number of components are found and
then increase afterwards. This is because later components
really represent noise and not systematic information in the
data.

Cross-validation has two main purposes.
1. It can be employed as a method for determining how many

components characterise the data. From Fig. 18, it appears that
nine components are necessary to obtain an optimum model for
acenaphthylene. This number will rarely equal the number of

chemicals in the mixture, as spectral similarities will often
reduce this, whereas impurities and noise may increase it.

2. It can be employed as a fairly realistic error estimate for
predictive ability. The minimum cross-validated prediction
error for acenaphthylene of 0.040 mg L21 equals 33.69%. This
compares with an autopredictive error of 0.014 mg L21 or
11.64% using ten components and PLS1 which is a very over-
optimistic estimate.

Many refinements to cross-validation have been proposed in
the literature. It is possible to perform cross-validation on the x
block to determine the optimum number of components instead
of the c block. There are several alternative approaches to cross-
validation, a common one involving leaving larger proportions
of the data out (e.g. one tenth) at a time, valuable for very large
datasets. Some statisticians also propose methods involving
removing individual measurements rather than individual
objects or spectra, but such approaches are less used in
analytical chemistry. The ‘leave one sample out at a time’
method is a popular, easily implemented, and widespread
approach. There tends to be a significant divide between
statisticians who may use a number of different sophisticated

Table 19 Result of performing three-way PLS on the data of case study 2, uncentred and first three components

t1 t2 t3 jp1
jp2

jp3
kp1

kp2
kp3 q1 q2 q3

9.424 20.450 20.195 0.000 0.001 0.001 0.180 0.164 20.152 0.00491 0.00012 20.00064
9.459 20.047 0.086 0.000 0.002 0.003 0.095 0.109 20.113 0.05116 0.09439
9.643 20.211 20.100 0.000 0.005 0.008 0.039 0.075 20.091 20.21409
9.762 20.164 20.047 0.001 0.014 0.023 0.018 0.066 20.088
9.475 20.095 20.015 0.002 0.033 0.052 0.013 0.069 20.095
9.557 20.299 20.237 0.003 0.065 0.102 0.013 0.075 20.104
9.677 0.388 0.233 0.005 0.110 0.170 0.015 0.080 20.111
9.713 20.037 20.041 0.007 0.162 0.243 0.018 0.082 20.112
9.891 0.105 0.051 0.009 0.206 0.306 0.022 0.081 20.108
9.692 0.078 20.040 0.009 0.233 0.341 0.028 0.077 20.099
9.555 0.045 20.036 0.010 0.238 0.343 0.035 0.073 20.090
9.877 0.050 20.061 0.009 0.224 0.317 0.043 0.072 20.085
9.922 0.339 0.053 0.009 0.200 0.270 0.053 0.076 20.086
9.758 20.050 20.202 0.010 0.178 0.210 0.065 0.087 20.096

0.016 0.172 0.134 0.079 0.103 20.112
0.033 0.194 0.039 0.094 0.123 20.133
0.065 0.244 20.071 0.112 0.145 20.158
0.118 0.303 20.176 0.131 0.169 20.183
0.187 0.336 20.244 0.150 0.192 20.207
0.259 0.310 20.247 0.171 0.213 20.229
0.320 0.222 20.189 0.191 0.232 20.247
0.357 0.100 20.096 0.212 0.247 20.259
0.366 20.019 20.003 0.230 0.257 20.264
0.351 20.109 0.069 0.247 0.261 20.261
0.321 20.161 0.114 0.261 0.258 20.251
0.284 20.181 0.136 0.271 0.251 20.236
0.245 20.178 0.141 0.276 0.241 20.218
0.208 20.162 0.135 0.276 0.228 20.199
0.175 20.142 0.124 0.271 0.214 20.180
0.146 20.120 0.110 0.261 0.200 20.165
0.123 20.100 0.095 0.244 0.187 20.154
0.103 20.083 0.081 0.222 0.173 20.145
0.087 20.069 0.068 0.195 0.158 20.137
0.074 20.057 0.057 0.167 0.143 20.128
0.064 20.047 0.049 0.140 0.128 20.119
0.055 20.039 0.041 0.111 0.111 20.108
0.048 20.032 0.035 0.080 0.092 20.095
0.042 20.027 0.031 0.052 0.073 20.082
0.037 20.022 0.026 0.030 0.056 20.068
0.033 20.019 0.023 0.015 0.043 20.056

0.007 0.034 20.046
0.004 0.026 20.037
0.002 0.020 20.029
0.001 0.015 20.021
0.001 0.011 20.015
0.001 0.007 20.010
0.000 0.005 20.007
0.000 0.003 20.004
0.000 0.002 20.003
0.000 0.001 20.002
0.000 0.001 20.001
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methods for cross-validation and analytical chemists who are
generally satisfied with a straightforward approach.

3.3 Independent test sets

A significant weakness of cross-validation, is that it depends on
the design and scope of the original dataset used to form the
model. This dataset is often called a ‘training’ set. Consider a
situation in which a series of mixture spectra are recorded, but

it happens that the concentrations of two compounds are
correlated, so that the concentration of compound A is high
when compound B likewise is high, and vice versa. A
calibration model can be obtained from analytical data, which
predicts both concentrations well. Even cross-validation might
suggest the model is good. However, if asked to predict a
spectrum where compound A is in a high concentration and
compound B in a low concentration it is likely to give very poor
results, as it has not been trained to cope with this new situation.
Cross-validation is very useful for removing the influence of
internal factors such as instrumental noise or dilution errors but
cannot help very much if there are correlations in the
concentration of compounds in the training set.

In some cases there will inevitably be correlations in the
concentration data, because it is not easy to find samples
without this. An example is in many forms of environmental
monitoring. Several compounds often arise from a single
source. For example, PAHs are well known pollutants, so if one
or two PAHs are present in high concentrations it is a fair bet
that others will be too. There may be some correlations, for
example, in the occurrence of compounds of different molecular
weights if a homologous series occurs, e.g. as the by-product of
a biological pathway, there may be an optimum chain length
which is most abundant in samples from a certain source. It
would be hard to find field samples in which the concentrations
of all compounds vary randomly. Consider, for example, setting
up a model of PAHs coming from rivers close to several specific
sources of pollution. The model may behave well on this
training set, but can it be safely used to predict the concentra-
tions of PAHs in an unknown sample from a very different
source? Another serious problem occurs in process control.
Consider trying to set up a calibration model using NIR to
determine the concentration of chemicals in a manufacturing
process. If the factory is behaving well, the predictions may be
good, but it is precisely to detect problems in the process that the
calibration model is effective: is it possible to rely on the
predictions if data have a completely different structure?

Instead of validating the predictions internally, it is possible
to test the predictions against an independent data set, often
called a ‘test’ set. Computationally the procedure is similar to
cross-validation. For example, a model is obtained using I
samples, and then the predictions are calculated using an
independent test set of L samples, to give
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The value of ĉl is determined in exactly the same way as per
cross-validation (Section 3.2), but the calibration model is
obtained only once, from the training set.

In case study 1, we can use the data arising from Table 1
(dataset A) for the training set (see above), but test the
predictions using the spectra obtained from concentrations in
Table 2 (dataset B). In this case, each dataset has the same
number of samples, but this is not at all a requirement. The
graph of Etest for acenaphthylene is presented in Fig. 19 and
shows similar trends to that of Ecv although the increase in error
when a large number of components are calculated is not so
extreme. The minimum error is 35.78%, only slightly higher
than for cross-validation. Normally the minimum test set error
is higher than that for cross-validation, but if the structure of the
test set is encompassed in the training set, these two errors will
be very similar.

If, however, we use dataset B as the training set and dataset
A as the test set, a very different story emerges as shown in Fig.
20 for acenaphthylene. The autopredictive and cross-validation
errors are very similar to those obtained for dataset A: the value

Table 20 Predicted concentrations using three-way PLS for case study 2,
uncentred data

One
component

Two
components

Three
components

0.046 0.024 0.018
0.046 0.045 0.016
0.047 0.038 0.033
0.048 0.041 0.029
0.047 0.043 0.031
0.047 0.033 0.049
0.048 0.069 0.049
0.048 0.047 0.046
0.049 0.055 0.048
0.048 0.053 0.062
0.047 0.050 0.056
0.049 0.052 0.064
0.049 0.067 0.082
0.048 0.047 0.079

Error (%) 42.267 35.981 5.534

Table 21 Residual sum of squares of the x values for the example of
Section 2.5.2 as successive components are calculated

0 components 1311.218
1 component 1.265
2 components 0.601
3 components 0.377

Fig. 17 2Ecal (bottom line) and 1Ecal (top line) against component number
for acenaphthylene, as discussion in Section 3.1, plotted on a logarithmic
scale for clarity.

Fig. 18 Ecv for acenaphthylene using PLS1 as described in Section 3.2.
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of 1Ecal using ten PLS components is 8.71%, compared with
11.34% and the minimum value of Ecv is 27.93% compared with
33.69%. However, the test set behaves differently and exhibits
a minimum error of 49.12%, well in excess of the cross-
validation error. Furthermore, Etest is always higher than Ecv

except when a very large number of components have been
calculated. When the model of dataset A is used to predict
dataset B, it is found that there is not such a significant
difference between the two types of errors.

Hence dataset A is a good test set because it not only predicts
itself well but also dataset B, but the reverse is not true. This
suggests that dataset A encompasses the features of dataset B,
but not the reverse. The reason for this apparent dichotomy will
be discussed in greater detail in Section 3.4, and it is important
to recognise that cross-validation can sometimes give a
misleading and over-optimistic answer. However, this depends
in part on the practical aim of the analysis. If, for example, data
of the form of A are unlikely ever to occur, it is safe to use the
model obtained from B for future predictions. For example, if it
is desired to determine the amount of vitamin C in orange juices
from a specific region of Spain, it might be sufficient to develop
a calibration method only on these juices. It could be expensive
and time-consuming to find a more representative calibration
set. Is it really necessary or practicable to develop a method to
measure vitamin C in all conceivable orange juices or
foodstuffs? The answer is no, so, in some circumstances, living
within the limitations of the original dataset is entirely
acceptable. If at some future date extra orange juice from a new
region is to be analysed, the first step is to set up a dataset from
this new source of information as a test set and so determine
whether the new data fit into the structure of the existing
database or whether the calibration method must be developed
afresh. It is, though, very important to recognise the limitations
of calibration models especially if they are to be applied to
situations that are wider than those represented by the initial
training sets.

There are a number of variations on the theme of test sets, one
being simply to take a few samples from a large training set and
assign them to a test set, for example, take five out of the 25
samples from case study 1 (dataset A) and assign them to a test
set, using the remaining 20 samples for the training set.
Alternatively, datasets A and B could be combined, and 40 out
of the 50 used for determining the model, the remaining ten for
independent testing.

3.4 Experimental designs

One of the major problems arises in designing an adequate
training set. In some cases it is not possible to control this easily
(for example when sampling in the field) but in other situations,
such as preparing mixtures in the laboratory, good design is
possible.

Many brush aside the design of training sets, often using
empirical or random approaches. Some chemometricians rec-
ommend huge training sets of several thousand samples so as to
get a representative distribution, especially if there are known to
be half a dozen or more significant components in a mixture. In
large industrial calibration models such a procedure is often
considered important for robust predictions. This approach,
though, is expensive in time and resources, and rarely possible
in routine laboratory studies. More seriously, many in-
strumental calibration models are unstable, so calibration on
Monday might vary significantly from calibration on Tuesday,
hence if calibrations are to be repeated at regular intervals, the
number of spectra in the training set must be limited. Finally
very ambitious calibrations can take months or even years to
develop, by which time instruments and often the detection
methods are replaced. It is always important to consider
resources available and balance how robust a model is required,
and how frequently the measurement system will change.

For the most effective calibration models, it is best to
determine carefully  the nature of the training set using rational
experimental design prior to investing time in experimentation.
Provided that the spectra are linearly additive, and there are no
serious baseline problems or interactions, there are standard
designs that can be employed to obtain training sets. In fact, the
majority of chemometric techniques for regression and calibra-
tion assume linear additivity. In the case where this may not be
so, either the experimental conditions can be modified (for
example if the concentration of a compound is too high so the
absorbance does not obey the Beer–Lambert law the solution is
simply diluted) or various approaches for multilinear modelling
are required.

In calibration it is normal to use several concentration levels
to form a model. Hence two-level designs37 (often presented as
fractional factorials) are inadequate and typically four or five
concentration levels are required for each compound. Chemo-
metric techniques are most useful for multicomponent mixtures.
Consider an experiment carried out in a mixture of methanol
and acetone. What happens if the concentrations of acetone and
methanol in a training set are completely correlated? If the
concentration of acetone increases so does that of methanol, and
similarly with a decrease. Such an experimental arrangement is
shown in Fig. 21. A more satisfactory design is given in Fig. 22,
in which the two concentrations are completely uncorrelated or
orthogonal. In the former design there is no way of knowing
whether a change in spectral characteristic results from change
in concentration of acetone or of methanol. If this feature is
consciously built into the training set and expected in all future
samples, there is no problem, but if a future sample arises with
a high acetone and low methanol concentration, calibration
software will give a wrong answer for the concentration of each
component. This is potentially very serious especially when the
result of chemometric analysis of spectral data is used to make

Fig. 19 Etest for acynaphthylene, using PLS1 as described in Section
3.3.

Fig. 20 Autopredictive, cross2validation and test errors for dataset B
(acynaphthylene) and PLS1.
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decisions, such as the quality of a batch of pharmaceuticals,
based on the concentration of each constituent as predicted by
computational analysis of spectra. In the absence of any certain
knowledge (for example that in all conceivable future samples

the concentrations of acetone and methanol will be correlated),
it is safest to design the training set so that the concentrations of
as many compounds as possible in a calibration set are
orthogonal. Note that this type of orthogonality is different from
the orthogonality or similarity between the spectra of each
compound. Many users of chemometric calibration have a
background in spectroscopy rather than experimental design
and confuse these two concepts.

A guideline to designing a series of multicomponent mixtures
for calibration is described below: more details are available
elsewhere.38,39

1. Determine how many components in the mixture ( = k) and
the maximum and minimum concentration of each component.
Remember that, if studied by spectroscopy, the overall
absorbance when each component is at a maximum should be
within the Beer–Lambert limit (about 1.2 A for safety).

2. Decide how many concentration levels are required for
each compound ( = l), typically four or five. Mutually orthogo-
nal designs are only possible if the number of concentration
levels is a prime number or a power of a prime number, meaning
that they are possible for 3, 4, 5, 7, 8 and 9 levels but not 6 or
10 levels.

3. Decide on how many mixtures to produce. Designs exist
involving N = mlp mixtures, where l equals the number of
concentration levels, p is an integer at least equal to 2, and m an
integer at least equal to 1. Setting both m and p at their minimum
values, at least 25 experiments are required to study a mixture
(of more than one component) at five concentration levels.

4. The maximum number of mutually orthogonal compound
concentrations in a mixture design where m = 1 is four for a
three-level design, five for a four-level design and 12 for a five-
level design. We will discuss how to extend the number of
mutually orthogonal concentrations below. Hence choose the
design and number of levels with the number of compounds of
interest in mind.

The method for setting up a calibration design will be
illustrated by a five-level, eight compound, 25 experiment,
mixture, to give the design in Table 22.

1. The first step is to number the levels, typically from 22
(lowest) to +2 (highest), corresponding to coded concentrations,

Fig. 21 Two factor, correlated, design.

Fig. 22 Two factor, uncorrelated, design.

Table 22 Construction of an orthogonal calibration design for eight compounds and 25 levels
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e.g. the 0.7–1.1 mM; note that the coding of the concentrations
can be different for each compound in a mixture.

2. Next, choose a repeater level, recommended to be the
middle level, 0. For between 7 and 12 factors, and a five-level
design, it is essential that this is 0. The first experiment is at this
level for all factors.

3. Third, select a cyclical permuter for the remaining (l 2 1)
levels. This relates each of the four levels as will be illustrated
below; only certain cyclic generators can be used namely
22?21?2?1?22 and 22?1?2?21?22 which
have the property that factors j and j + l + 1 are orthogonal. For
less than seven factors, the nature of this generator is not
relevant, so long as it includes all four levels. One such permuter
is illustrated in Fig. 23, used in the example below.

4. Finally, select a difference vector; this consists of l 2 1
numbers from 0 to l2 2, arranged in a particular sequence. Only
a very restricted set of such vectors are acceptable of which [0
2 3 1] is an example. The use of the difference vector will be
described below.

5. Then generate the first column of the design consisting of
l2 ( = 25) levels in this case, each level corresponding to the
concentration of the first compound in the mixture in each of 25
experiments.

(a) The first experiment is at the repeater level for each
factor.

(b) The l 2 1 ( = 4) experiments 2, 8, 14 and 20 are at the
repeater level. In general the experiments 2, 2 + l + 1, 2 + 2 (l
+ 1) up to 2 + (l 2 1) 3 (l + 1) are at this level. These divide
the columns into ‘blocks’ of five ( = l) experiments.

(c) Now determine the levels for the first block, from
experiments 3 to 7 (or in general terms experiments 3 to 2 + l).
Experiment 3 can be at any level apart from the repeater. In the
example below, we use level 22. The key to the conditions for
the next four experiments is the difference vector. The
conditions for the 4th experiment are obtained from the
difference vector and cyclic generator. The difference vector [0
2 3 1] implies that the second experiment of the block is 0
cyclical differences away from the 3rd experiment or 22 using
the cyclic permuter of Fig. 23. The next number in the
difference vector is 2, making the 5th experiment at level 2
which is two cyclic differences from 22 . Continuing, the 6th
experiment is three cyclic differences from the 5tht experiment
or at level 21, and the final experiment of the block is at level
2.

(d) For the second block (experiments 9–13), simply shift
the first block by one cyclic difference using the permuter of
Fig. 23 and continue until the last (or fourth) block is
generated.

6. Then generate the next column of the design as follows:
(a) The concentration of the second compound for the first

experiment is always at the repeater level.
(b) The concentration for the second experiment is at the

same level as the third experiment of the previous column, up to
the 24th [ or (l2 2 1)th] experiment.

(c) The final experiment is at the same level as the second
experiment for the previous compound.

7. Finally, generate successive columns using step 6 above.

The development of the design is illustrated in Table 22. Such
designs can also be denoted l-level partial factorial designs.
Note that a full five-level factorial design for eight compounds
would require 58 or 390625 experiments, so there has been a
dramatic reduction in the number of experiments required.

There are a number of important features to note about the
design in Table 22.

1. In each column there are an equal number of 22, 21, 0, +1
and +2 levels.

2. Each column is orthogonal to every other column, that is
the correlation coefficient is 0.

3. A graph of the levels of any two factors against each other
is given in Fig. 24(a) for each combination of factors except
factors 1 and 7, and 2 and 8, which graph is given in Fig. 24(b).
It can be seen that in most cases the levels of any two factors are
distributed exactly as they would be for a full factorial design,
which would require almost half a million experiments. The
nature of the difference vector is crucial to this important
property. Some compromise is required between factors
differing by l + 1 (or 6) columns, such as factors 1 and 7. This
is unavoidable unless more experiments are performed.

It is possible to expand the number of factors using a simple
trick of matrix algebra. If a matrix A is orthogonal, then the
matrix

A A

A A-
Ê
ËÁ

ˆ
¯̃

is also orthogonal. Therefore, new matrices can be generated
from the original orthogonal designs, to expand the number of
compounds in the mixture.

Any design can be checked for orthogonality, simply by
determining the correlation coefficients between the concentra-
tions of the various compounds. If the correlations are 0, then
the design is a good one, and will result in a training set that
spans the possible mixture space fairly evenly, whereas if there

Fig. 23 A possible permuter
Fig. 24 Graph of levels of (a) factor 2 versus 1 and (b) factor 7 versus 1
for the data of Table 20.
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are correlations, the training set is less representative. Table 23
presents the correlations for datasets A and B of case study 1. It
can be seen that the first is orthogonal, whereas the second
contains correlations. This structure allows us to interpret the
results of Section 3.3. The model from the well designed dataset
A both predicts itself well and also predicts dataset B. However,
although dataset B is well predicted using itself as a model
(cross-validation) it does not provide such good predictions for
the more representative dataset A.

It is always important to consider the issues of design and
orthogonality of training sets, as this provides clear guidance as
to when the model is likely to perform adequately, and so the
scope of the calibration.

4 Conclusions and discussion

There are many topics omitted from this review, some of which
are listed below.

Data preprocessing is important in multivariate calibration.
Indeed, the relationship between even basic procedures such as
centring the columns is not always clear, most investigators
following conventional methods, that have been developed for
some popular application but are not always appropriately
transferable. Variable selection and standardisation can have a
significant influence on the performance of calibration mod-
els.

Non-linearities occur in some forms of spectroscopy, espe-
cially when the absorbance is high, and greater effort has been
made to enhance the basic PLS method to include squared and
other terms. However, the analytical chemist will probably
prefer to improve the experimental method of acquiring data.
Non-linear calibration is most valuable in other areas of
chemistry, such as QSAR, where a purely additive linear model
is not necessarily expected.

Outlier detection is of concern in certain areas of science. The
aim is to spot samples that do not appear to conform to the
structure of the training set used to determine the calibration
model. If outlying samples are treated in the normal way,
inaccurate concentrations may be predicted; this is a con-

sequence of experimental design of the training set. In the case
of field samples, it is not always possible to produce training
sets with orthogonal designs, so only samples with a similar
structure will result in sensible predictions.

Multiway methods can be extended far beyond trilinear
PLS1, and there are many cases in chemistry where such
approaches are appropriate. However, in the case of calibration
of analytical signals to determine concentrations, trilinear PLS1
is adequate in the majority of situations.

Users of a specific software package can often be over-
whelmed by statistical output, but it is important to recognise
that certain types of diagnostics are only really useful for
particular problems. The huge influence that NIR had on the
first applications of multivariate calibration has meant that
several software packages are oriented heavily to the user of
NIR instruments. Although a major success story in the history
of chemometrics, it is for the analytical chemist to judge
whether NIR will play a huge role in the future, or whether there
are fertile new grounds for the detailed development of
multivariate calibration methods throughout quantitative ana-
lytical chemistry.

It is important to understand the overall principles of the
methods rather than rely too much on any individual piece of
software or application. In fact the algorithms are straightfor-
ward and can be easily implemented computationally. For any
individual instrumental technique, be it HPLC, or electro-
chemistry, or electronic absorption spectroscopy, and any
specific application, such as process control or environmental
monitoring, specific extensions are needed, and different
workers from different scientific environments often assume
that their own elaborations are generally transportable. This is
often not the case, but a basic understanding of the methods
reported in this paper provides a generic starting point for
analytical calibration.
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A Appendices

A1 Vectors and matrices

A1.1 Notation and definitions
A single number is often called a scalar, and denoted in italics,
e.g. x.

A vector consists of a row or column of numbers and is
denoted as bold lower case italics e.g. x. For example x = (7 8

11 25) is a row vector and y = a column vector.
1 2

3 6

0 5

.

.

.

-
Ê

Ë

Á
Á

ˆ

¯

˜
˜

A matrix is a two dimensional array of numbers and is
denoted as bold upper case italics e.g. X. For example

X = is a matrix.7

2

11

8

0

5
ˆ
¯̃

Ê
ËÁ

The dimensions of a matrix are normally presented with the
number of rows first and the number of columns second, and
vectors can be represented as matrices with one dimension
equal to 1, so that x above has dimensions 1 3 4 and X has
dimensions 2 3 3.

A square matrix is one where the number of columns equals

the number of rows. For example is a
square matrix.

Y =
-

-

Ê

Ë

Á
Á

ˆ

¯

˜
˜

3 9 2

6 0 8

10 4 1

An identity matrix is a square matrix whose elements are
equal to 1 in the diagonal and 0 elsewhere, and is often called I.

For example I = is an identity matrix.1 0

0 1
Ê
ËÁ

ˆ
¯̃

The individual elements of a matrix are often referenced as
scalars, with subscripts referring to the row and column; hence,
in the matrix above, y21 = 6 which is the element in row 2 and
column 1.

A1.2 Matrix operations.
Transposing a matrix involves swapping the columns and rows
around, and is denoted by a right-hand-side superscript. For

example, if Z = then3 1 0 2 6 1 4 8

9 2 3 8 2 0 5 1

. . . .

. . . .
Ê
ËÁ

ˆ
¯̃

¢ =

Ê

Ë

Á
Á
Á
Á

ˆ

¯

˜
˜
˜
˜

Z

3 1 9 2

0 2 3 8

6 1 2 0

4 8 5 1

. .

. .

. .

. .

Matrix and vector multiplication using the ‘dot’ product is
denoted by the symbol ‘.’ between matrices. It is only possible
to multiply two matrices together if the number of columns of
the first matrix equal the number of rows of the second matrix.
The number of rows of the product will equal the number of
rows of the first matrix, and the number of columns equal the

number of columns of the second matrix. Hence a 3 3 2 matrix
when multiplied by a 2 3 4 matrix will give a 3 3 4 matrix.

Multiplication of matrices is not commutative, that is A.B ≠
B.A even if the second product is allowable. Matrix multi-
plication can be expressed as summations. For arrays with more
than two dimensions (e.g. tensors), conventional symbolism can
be awkward and it is probably easier to think in terms of
summations.

If matrix A has dimensions I 3 J and matrix B has
dimensions J 3 K then the product C of dimensions I 3 K has
elements defined by

c a bik ij jk

j

J

=
=

Â
1

Hence 

1 7

9 3

2 5

6 10 11 3

0 1 8 5

6 17 67 38

54 93 123 42

12 25 62 31

Ê

Ë

Á
Á

ˆ

¯

˜
˜

∑
Ê
ËÁ

ˆ
¯̃

=
Ê

Ë

Á
Á

ˆ

¯

˜
˜

When several matrices are multiplied together it is normal to
take any two neighbouring matrices, multiply them together and
then multiply this product with another neighbouring matrix. It
does not matter in what order this is done, hence A.B.C =
(A.B).C = A.(B.C).

Most square matrices have inverses, defined by the matrix
which when multiplied with the original matrix gives the
identity matrix, and is represented by a 21 as a right-hand-side
superscript, so that D.D21 = I. Note that some square matrices
do not have inverses: this is caused by there being correlations
in the columns or rows of the original matrix.

An interesting property that chemometricians sometimes use
is that the product of the transpose of a column vector with itself
equals the sum of square of elements of the vector, so that xA.x
= Sx2.

A2 Algorithms

There are many different descriptions of the various algorithms
in the literature. This appendix describes one algorithm for each
of four regression methods.

A2.1 Principal components analysis
NIPALS is a common, iterative, algorithm.

Initialisation
1. Take a matrix Z and if required preprocess (e.g. mean-centre
or standardise) to give the matrix X which is used for PCA.

The next principal component
2. Take a column of this matrix (often the column with greatest
sum of squares) as the first guess of the scores first principal
component, call it initialt̂.

Iteration for each principal component

3. Calculate unicorm p̂ = 
initial

t

ˆ

ˆ
¢t .X

S 2

Comment: ideally t.p = X,
so, pre-multiplying each side by tA we would have
tA.t. p = St2p ≈ tAX for an exact fit, leading to the
approximation above.

4. Normalise the guess of the loadings, so

ˆ
ˆ

ˆ
p

p
=

unnorm

unnorm pS 2
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Comment: this forces the sum of squares of the loadings to
equal one.

5. Now calculate a new guess of the scores
newt̂ = X.p̂A

Comment: ideally t.p = X,
so, post-multiplying each side by p we would have
t. p = X.pA.p = X since p is normalised, so its sum of
squares equals 1.

Check for convergence
6. Check if this new guess differs from the first guess, a

simple approach is to look at the size of the sum of square
difference in the old and new scores, i.e.S(initialt 2 newt)2. If this
is small the PC has been extracted, set the PC scores and
loadings for the current PC to t̂ and p̂. Otherwise return to step
3, substituting the initial scores by the new scores.

Compute the component and calculate residuals
7. Subtract the effect of the new PC from the data matrix to

get a residual data matrix
residX = X 2 t.p.

Further PCs
8. If it is desired to compute further PCs, substitute the

residual data matrix for X and go to step 2.

A2.2 PLS1
There are several implementations, the one below is non-

iterative.

Initialisation
1. Take a matrix Z and if required preprocess (e.g. mean-

centre or standardise) to give the matrix X which is used for
PLS.

2. Take the concentration vector k and preprocess it to give
the vector c which is used for PLS. Note that if the data matrix
Z is centred down the columns, the concentration vector must
also be centred. Generally, centring is the only form of
preprocessing useful for PLS1. Start with an estimate of ĉ that
is a vector of 0s (equal to the mean concentration if the vector
is already centred).

The next PLS component
3. Calculate the vector 

h = XA.c
Comment: sometimes a weighting vector s is employed,
the aim being to obtain X from c or the concentrations from
the observed data. For a one component mixture, ide-
ally,

X = c. s

or

XA .X . sA = XA . c. s . sA

giving

XA .X . sA = XA . c. s . sA

h = XA .X . sA (s . sA)21 = XA . c. (s . sA) (s . sA)21 = XA.c
The equation can also be expressed by a summation

h c xj i ij

i

I

=
=

Â
1

4. Calculate the scores which are simply given by

t
X .= A h

hS 2

5. Calculate the x loadings by

p
X .t= ¢
St2

Comment: note that these are normalised again.
6. Calculate the c loading (a scalar) by

p
X .t= ¢
St2

Comment: note this calculation is identical in nature with the x
loadings except that X is replaced by c.

Compute the component and calculate residuals
7. Subtract the effect of the new PC from the data matrix to

get a residual data matrix
resid X = X 2 t.p

8. Determine the new concentration estimate by
newĉ = initialĉ + t.q

and sum the contribution of all components calculated to give an
estimated ĉ. Note that the initial concentration estimate is 0 (or
the mean) before the first component has been computed.
Calculate

residc = truec 2 ĉ

where truec contains, like all values of c, preprocessing (such as
centring).

Further PLS components
9. If further components are required, replace both X and c by

the residuals and return to step 3.

A2.3 PLS2
This is a straightforward, iterative, extension of PLS1. Only

small variations are required. Instead of c being a vector it is
now a matrix C and instead of q being a scalar it is now a vector
q.

Initialisation
1. Take a matrix Z and if required preprocess (e.g. mean-

centre or standardise) to give the matrix X which is used for
PLS.

2. Take the concentration matrix K and preprocess it to give
the matrix C which is used for PLS. Note that if the data matrix
is centred down the columns, the concentration vector must also
be centred. Generally, centring is the only form of preprocess-
ing useful for PLS2. Start with an estimate of Ĉ that is a matrix
of 0s (equal to the mean concentration if the matrix is already
centred).

3. An extra step is required to identify a vector u which can
be a guess (as in PCA), but it can be chosen as one of the
columns in the initial preprocessed concentration matrix, C.

The next PLS component
4. Calculate the vector

h = XA.u

5. Calculate the guessed scores by

new h

h
t̂ =

X.

Â 2

6. Calculate the guessed x loadings by

ˆ
ˆ

ˆ
p =

X .t¢
Â t 2

7. Calculate the c loadings (a vector rather than scalar in
PLS2) by
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ˆ
ˆ

ˆ
q =

C .t¢
Â t 2

8. If this is the first iteration, remember the scores, and call
them initialt, then produce a new vector u by

u =
C.q̂
Â q2

and return to step 4.

Check for convergence
9. If this is the second time round compare the new and old

scores vectors, for example, by looking at the size of the sum of
square difference in the old and new scores, i.e. ∑(initialt 2
newt)2. If this is small the PC has been adequately modelled, set
the PC scores and both types of loadings for the current
component to t̂, and p̂, and q̂. Otherwise calculate a new value
of u as in step 8 and return to step 4.

Compute the component and calculate residuals
10. Subtract the effect of the new PC from the data matrix to

get a residual data matrix
resid X = X 2 t.p

11. Determine the new concentration estimate by
newĈ = Ĉ + t.q

and sum the contribution of all components calculated to give an
estimated ĉ. Calculate

residC = trueC 2 Ĉ

Further PLS components
12. If further components are required, replace both X and C

by the residuals and return to step 4.

A2.4 Tri-linear PLS1
The algorithm below is based closely on PLS1 and is suitable
when there is only one column in the c vector.

Initialisation
1. Take a three way tensor Z and if required preprocess (e.g.

mean-centre or standardise) to give the tensor X which is used
for PLS. Perform all preprocessing on this tensor. The tensor
has dimensions I 3 J 3 K.

2. Preprocess the concentrations if appropriate to give a
vector c.

The next PLS component
3. From the original tensor, create a new matrix H with

dimensions J 3 K which is the sum of each of the I matrices for
each of the samples multiplied by the concentration of the
analyte for the relevant sample i.e.

H = X1 c1 + X2 c2 + …. XIcI

or, as a summation

h c xjk i ijk

i

I

=
=

Â
1

Comment: this is analogous to the vector h in PLS1, given by

h c xj j ij

i

I

=
=

Â
1

4. Perform PCA on H to obtain the scores and loadings, gt
and gp for the first PC of H. Note that only the first PC is
retained, and for each PLS component a fresh H matrix is
obtained.

5. Calculate the two x loadings for the current PC of the
overall dataset by normalising the scores and loadings of H
i.e

j
h

h

k
h

h

t

p

p =
t

p =
p

’

Â

Â

2

2

Comment: in most cases hp will already be normalised, so the
second step is not needed.

6. Calculate the overall scores by

t x p pi ijk
j

j
k

k

k

K

j

J

=
==

ÂÂ
11

Comment: this is sometimes expressed in the form of tensor
multiplication, but this is not always an easy concept. However,
there are strong analogies to PLS1, since

H

H

h

h h

j k

ª

Â
ª

t. p

p. pso,  
2

because the two loadings vectors are normalised, hence their
sum of squares equals 1.
Therefore, analogous to step 4 of PLS1

t =
X ƒ

Â

H

h2

where the symbol # is sometimes used to indicate tensor
multiplication.

7. Calculate the c loadings vector

q = (TA.T)21.TA.c

where T is the scores matrix, each column consisting of one
component (a vector for the first PLS component).
Comment: in PLS1 each element of the c loadings can be
calculated independently. This is not possible with PLS2, as the
scores are not orthogonal, so the loadings vector needs to be
recalculated after each component.

Compute the component and calculate residuals
8. Subtract the effect of the new PC from the original data

matrix to get a residual data matrix (for each sample i)
residXi = Xi 2 ti.jp.kp

9. Determine the new concentration estimates by

ĉ = T.q

Calculate
residc = truec 2 ĉ

Further PLS components
10. If further components are required, replace both X and c

by the residuals and return to step 3.
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