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Foreword

Imagine the following scenario: you have a seemingly impossible 
quality problem to solve. A new lyophilized product your com-
pany is about to launch is apparently unstable at commercial 
scale. Management is breathing down your neck for an immedi-
ate solution, since the research and development scale-up data 
indicated the formulation is stable. A crisis team was formed and 
has been working on a solution for almost six months.

Seeing the difficulty, a colleague suggests a different 
approach to looking at the problem, calling together a sub-
team of four people that are the most knowledgeable about 
the production process. They use a few simple tools and deter-
mine the most probable cause of the problem in a couple of 
hours using  existing data. The resulting action plan corrects 
the problem, stable lyophilized lots are produced, and the 
product is launched on schedule. Does this sound too good to 
be true?

Fortunately, for those facing similar seemingly insupera-
ble problems, the story is actually true. Not only is this specific 
story true, but also there are many more like it. Virtually every 
major biopharmaceutical company in the world has its own 
case study. These solutions were achieved thanks to a few 
simple process analysis tools and a systematic structured 
approach to visualizing data-rich experiments.
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How do I know they work? Because I have personally 
used them, I have taught people to use them, and I have seen 
the results myself first hand.

Read this book. Buy copies for the people in your com-
pany who work on difficult problems and train them in the 
methodology. Use the techniques to help find your own solu-
tions to nearly impossible problems. Do not miss a chance to 
use the most powerful toolkit I have seen used in my 35 years 
in the industry. If you do not use these tools, you are also 
missing the opportunity to bring robust life saving therapeu-
tics, as quickly as possible, to the people we really work for—
the patients and their families.

THE APPROACH

DOE is an acronym for design of experiments, also called 
experimental design or multifactor experiments. These exper-
imental approaches provide rich veins of data that can be 
mined for information that cannot be found any other way.

The reason for design in the description is that DOE 
experiments must be scientifically sound and statistically 
valid, especially for use in the highly regulated biopharma-
ceutical industry. Scientific soundness is the cornerstone of 
the scientific peer review process, and (read world regulatory 
authority) Food and Drug Administration review and approval 
of such studies in support of product license approval. 
Statistical validity is necessary to ensure the integrity of the 
experiments and to appropriately interpret the significance 
of the data. In real terms, these are the same science and sta-
tistics that are applied to clinical trials; now the application 
is being extended to production process monitoring, quality 
control testing, validation and process analytical technology 
or PAT. The DOE concepts are also valuable tools capable of 
being used to exploit existing data and help solve seemingly 
impossible product quality problems.

Scientists and managers are traditionally taught that 
experiments should only change one factor at a time (e.g., 
temperature), holding other factors constant (time, pH, etc.), 
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in order to explain the individual effect on product quality. By 
contrast, the design of experiments trials are carefully worked 
out to assess many possible factors (time, temperature, and 
pH) at various levels (one hour vs. two hours at 25°C vs. 30°C 
at pH 6.5 vs. pH 7.5) to determine which one, or combination, 
has the greatest effect on the product’s quality characteristics, 
such as yield, impurities, and viral reduction. DOE measures 
not only the single factor effects, but also the cumulative and 
interaction effects of all the factors investigated on product 
quality. Most important is the fact that DOE is the only way 
to see interaction effects; one factor at a time experiments give 
you just that, one effect for each factor.

INTERACTION EFFECTS

DOE is the only technique that enables scientists and manag-
ers to find, see, and use interaction effects that can improve 
product quality and yield or help set  process boundaries to 
prevent failure. The well entrenched views that only one factor 
at a time can be studied and the widely held management 
maxim that “if it ain’t broke, don’t fix it” are not only wrong 
but, in some cases, dangerous; a  process can drift into failure, 
or periodically have an “unexplainable” failure, due to interac-
tion effects. DOE permits scientists to conduct small scale, 
low cost process improvement experiments to model large 
scale, “unbroken” commercial processes without endangering 
current production runs and product supply. These same 
experiments can also generate data that drives continuous 
process improvement (read “make more profitable”) of a pro-
cess that “ain’t broke.”

LEAST COST/FASTEST ROUTE

DOE is the least costly way to collect data. First, the basis 
for performing a series of designed experiments is usually 
reviewing the existing process database; the longer a process 
has run the richer the possibilities. Second, the experiments 
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are usually conducted using a small scale process simula-
tion—a much less expensive approach than tying up the pro-
duction line. Third, the scale and cost of down-sized runs 
permits a relatively larger number of runs in a relatively short 
period of time. The resulting body of data provides a roadmap 
for process improvements that can be verified by additional 
small scale or scaled up experiments prior to full scale transi-
tion that meets ongoing production requirements.

VALIDATION

DOE’s data will define critical process parameters for valida-
tion. The results of designed experiments are the identifica-
tion of the individual parameters and those parameter 
interactions that have the most effect on product quality and 
yield. These are the critical process parameters that need 
to be assessed during process validation. Just as important, 
DOE identifies those parameters that do not impact product 
quality. These do not need to be validated but rather moni-
tored and  controlled within their defined process ranges. The 
savings of validating the DOE defined critical process param-
eters versus validating “everything we think may be critical” 
is substantial in time, monetary, and human resource terms. 
Furthermore, given the scientific soundness and statistical 
validity of DOE results, processes validated using properly 
applied DOE principles are nearly bullet proof with the world’s 
regulatory agencies. 

SUMMARY

DOE is the fastest route to a profitable, reliable, robust, vali-
dated process. DOE’s requirement of a rigorous design meth-
odology that passes peer review with the scientists most 
knowledgeable about the process ensures scientific soundness. 
The depth of DOE’s statistical foundation that enables the 
measurement of  multiple effects and interactions in a single 
set of experiments proves DOE’s  statistical validity. DOE is 
also a resource conservator, since it requires less time and 
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provides data quicker than single factor at a time experiments. 
The proven statistical validity of the DOE technique guaran-
tees accurate analysis of the data and valuable information 
for management to turn data analysis and interpretation 
into action.

Ronald C. Branning
Genentech, Inc. 

South San Francisco, 
California, U.S.A.
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Preface

Designed experiments were shown to be useful for validation 
almost 30 years ago. The famous chemist/statistician, W. J. 
Youden, illustrated the use of Plackett–Burman designs for 
ruggedness testing in the 1975 book, Statistical Manual of the 
Association of Official Analytical Chemists (1). In that short 
introduction, he noted that “… if the program is carefully laid 
out, a surprisingly small amount of work suffices.” The exam-
ple given showed seven factors varied in eight runs. Each of 
the seven factors is estimated using all eight data values. This 
is the equivalent of having 56 data points, but only spending 
the money to buy eight. This efficiency is very attractive to 
laboratory managers who are charged with validating many 
analytical methods in a short time. Note that ruggedness test-
ing is still required today by the Food and Drug Administration 
in the 1987 Guideline for Submitting Samples and Analytical 
Data for Method Validation (2).

This editor gave his first talk on using designed experi-
ments in 1978 in response to the then draft Current Good 
Manufacturing Practices. In 1984, Chao, St. Forbes, Johnson, 
and von Doehren (3) gave an example of granulation valida-
tion using a 23 full factorial. Since then, there have been many 
journal articles and conference talks showing the application 
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of designed experiments to validation. A recent addition is the 
text by Lewis et al., Pharmaceutical Experimental Design (4).

Yet, for all of the dispersed information and examples, 
there still is unease in the pharmaceutical industry about 
using designed experiments in general or for validation spe-
cifically. Typical questions include, “What will the Food and 
Drug Administration say if I use a designed experiment for 
validation?” or “Won’t that take a lot longer and cost a lot more 
money?” In answer to the first question, the Food and Drug 
Administration requires the industry to use carefully designed 
experiments in clinical and animal studies. The well-regarded 
double blind clinical trial is a designed experiment. These are 
usually done exa ctly by the book. It is hard to see the Food 
and Drug Administration objecting to the use of designed 
experiments in validation when it is required in other areas. 
Further, in 1985, Ed Fry, while with the Food and Drug 
Administration, said in his excellent article “Then, the proc-
esses that cause variability … must be identified. Experi ments 
are conducted (that is validation runs) to ensure that factors 
that would cause variability, are under control …” (5).

This book is the answer to the second question. Designed 
experiments are the most scientific, the most efficient, and the 
most cost effective way we know how to collect data. Designed 
experiments need not be complicated or statistically complex.  
Realistic case studies and examples illustrate the use of design 
of experiments for validation. The use of graphics illustrate 
the designs and results. Formulas are minimized and used 
only where necessary. Where possible, a step-by-step approach 
or procedure is given. Detailed protocols and reports with real-
istic data are given where appropriate. This book  succeeds if 
the reader feels that it is obvious that design of experiments is 
the most logical and rational approach to use.

A variety of examples and case studies are given to show 
the wide range of application. Assay and bioassay validation, 
process and equipment validation, etc. Not all cases are “end 
point” validation, but are further up-stream, and part of the 
life cycle validation discussed by Chapman (6). 

Each chapter stands alone. It is not necessary to read 
them in sequence. The reader is encouraged to delve into the 

x Preface



chapters that seem most applicable and interesting. The text 
is intended to be a learn-by-doing-by-example. Find an exam-
ple close to a intended project and mimic the approach.

It is hoped by the authors and the editor that this text 
will encourage people to use designed experiments for validation 
and learn first hand the benefits.

Lynn D. Torbeck
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INTRODUCTION AND SCOPE

Quantitative methods are assays that result in meaningful 
numeric measurements for a characteristic of a product. 
Quantitative methods are used in assessing whether final 
product meets specifications. They are also used to measure 
product quality (or quantity) in various stages of manufacturing 
and the results are often used in quality control charts. 
Validation is an objective process used to determine whether 
a quantitative method is performing as expected and is appro-
priate for its intended use. This chapter provides the motivation 
behind validation, some terms and definitions used in valida-
tion, a consolidated statistically sound approach to validation, 
along with appropriate statistical analysis, and reporting of 
validation results. A hypothetical but realistic example is pre-
sented and is used to illustrate the validation process.

Motivation and some of the logistics of validation are pre-
sented here in the introductory section of the chapter. An 
example protocol is presented in the second section, followed 
by a section of terms and definitions. Design of experiments, 
presented in the fourth section, is used to ensure that the vali-
dation experiments represent the populations of all “runs” of 
the method that are being validated. Pragmatic limitations 
are discussed in this section.

The fifth section is a continuation of the example and con-
tains a hypothetical data set with an analysis. The sixth sec-
tion discusses statistical analyses and illustrates an analysis 
of the example validation data.

In this chapter, “method” refers to the procedure of inter-
est—the method being validated. The term “assay” is defined 
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as a single execution of this method, possibly abstract, while 
“run” refers to an actual single execution of the method. Often a 
procedure will call for multiple measures within an assay; these 
are referred to as “replicates.” The reportable value of an assay 
could be the result of one replicate or the average of multiple 
replicates (here, this is in the abstract sense; it is the formula, 
or formulae, which will be used to calculate the reported value). 
If the reportable value is defined as the average of three repli-
cates, then the reported value would be the average of the 
observed three replicate values from one run of the method.

Why Validate?

Validation can be a method of quantifying the performance of 
a process; in this case measuring the performance of a quanti-
tative method. In 1985, E. M. Fry wrote: “Validation has a 
quantitative aspect—it’s not just that you demonstrate that a 
process does what it purports to do; you actually have to mea-
sure how well its does that … then, the processes that cause 
variability … must be identified. Experiments are conducted 
(that is, validation runs) to ensure that factors that would 
cause variability, are under control (1).”

The process in question here is a quantitative method. 
The question becomes: “How well does the method measure 
the parameter that it purports to be  measuring?” Validation 
provides an objective measure of a method’s performance. 
Using samples with a known (or at least previously measured) 
value of a product parameter, validation can provide useful 
information about accuracy, precision, linearity, and other 
characteristics of the method’s performance outside of its daily 
use on unknown samples. In addition, validation can be used 
to identify sources of undesired variability.

Validation of a method involves running assays on ali-
quots from the same sample a number of times and ideally is 
done over a well-balanced design of all the external factors 
effecting performance. If, for example, more than one machine 
could be used for the method in question then, ideally, all 
machines should be tested in the validation. In a similar 
manner, the validation should be run over a number of days 
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(or otherwise changing environmental conditions) to show the 
method is rugged to typical environmental changes. Addi-
tionally, more than one analyst should run the validation 
assays if that is the normal practice or if the  analyst position 
has a high turnover.

What Are We Measuring?

Validation is the process of measuring the performance of a 
previously developed quantitative method. The characteris-
tics measured to assess performance are defined and explained 
in detail later in this chapter. Typically, for a quantitative 
method the characteristics of specificity, accuracy, precision, 
and linearity are measured. The range of the method can be 
defined, or verified, by the region where the aforementioned 
characteristics are acceptable. Although their determination 
is more appropriately a development task, the characteristics 
of robustness, limit of detection, and limit of quantitation can 
also be verified during validation.

The discussion here centers on the quantitative charac-
teristics of accuracy, precision, and linearity. Design of experi-
ments is also useful in supporting the validation of specificity 
and studying robustness (refer to section on Validation Terms 
and Definitions).

Development Versus Validation

Although the validation approach can be used in development, 
for simplification the author assumes that the method is fully 
developed before validation. Validation is an objective way of 
verifying that the development stage has been successful and 
the method is performing to expectations. Typically, the range 
of the method as well as the method’s input parameters will be 
defined during development and verified during validation.

Robustness of a method is defined as “a measure of its 
capacity to remain unaffected by small but deliberate varia-
tions in method parameters and provides an indication of its 
reliability during normal usage” [International Conference 
Harmonisation (ICH) Guideline Q2A (2)]. Intervals for method 
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parameters (e.g., ranges for elements or conditions of sample 
preparation) should be honed in the development stage to 
ensure consistency in assay results and may be verified during 
validation. Ranges for factors internal to the method such as 
incubation time and temperature are also determined during 
development. The standard operating procedure (SOP) should 
state ranges for method factors where assay performance is 
fairly consistent or robust. Ideally, the range is speci fied as 
target (low and high) so that the operator is aware of the target 
for the parameter, as well as how much the parameter can 
vary, and the method will still have similar assay perfor-
mance. For example, a method with an incubation time speci-
fied 25 minutes (24.5, 25.5) is less robust with respect to 
incubation time than a method with an incubation time speci-
fied 25 minutes (20, 30).

Experimental design can play a key role in finding these 
ranges of robustness during method development, but valida-
tion is a step taken after the appropriate ranges are set. Thus, 
for validation, each assay is run per the SOP and the internal 
factors are generally considered constants. If there is an 
acceptable range for a specific input parameter then valida-
tion can be used to verify that the method is still robust over 
the SOP specified range.

What Is Needed? Guidelines for Validation

Agencies, such as the Food and Drug Administration (FDA), 
United States Pharmacopoeia (USP), and ICH issue guide-
lines for method validations. Torbeck (3) has provided a com-
prehensive list of guidelines and references in his course on 
assay validation. For purposes of this chapter the ICH guide-
lines Q2A and Q2B (2,4) will be used. There are some minor 
differences in nomenclature between the different guidelines, 
and some of these will be explained in the short section on 
terms and definitions.

The purpose of a method validation is to show that the 
method performs to the expectations of the user. A priori 
expectations need to be set out in the form of acceptance 
 criteria. These must be formally stated using a preapproved 
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protocol. In addition to setting down a priori acceptance 
 criteria for the method’s performance characteristics, the 
protocol is a document written to specify how the validation 
will be run, the layout of the experimental design, the form 
of documentation for training and for execution of the valida-
tion experiments, how the data will be collected and ana-
lyzed, and additionally provides a structure for writing a 
final report. A hypothetical protocol and highlights of a sta-
tistical report will be used to demonstrate this process. It is 
important to remember that the intent of validation is to 
show that a method is acceptable for its intended use. Keep 
in mind that  validation is not an exploratory or develop-
ment process.

VALIDATION PROTOCOL

Protocol Content

A validation protocol states the purpose of the validation 
method, the intended substance being tested, the definition of 
the reportable value, the validation approach, the specific 
directions for conducting the validation assays, the statistical 
approach for analyzing the resulting data, and the nonambig-
uous acceptance criteria. The protocol should allow no room 
for ambiguity in the execution of the protocol or in the accep-
tance criteria. The content of a protocol is described next. 
There are many ways to format a protocol; herein are sugges-
tions for the content of a protocol.

The following is a hypothetical example of a validation 
protocol. For  purposes of this example we will assume that 
SOP 123 is the procedure used to measure mass (in μg) using 
a calibration curve from a standard solution (all  samples are 
pipetted to 1 μL; hence, we are actually measuring concentra-
tion, but volume is considered constant at 1 μL, so the term 
“mass” will be used for the measurement). Validation perfor-
mance characteristics are briefly defined in the context of a 
protocol. These terms are discussed in more detail in the fol-
lowing section on terms and definitions. Square brackets [ ] 
delineate general content of a section or parenthetic remarks.
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PROTOCOL FOR THE VALIDATION OF SOP 123 
FOR USE IN THE DETERMINATION OF 
MASS OF PRODUCT W

[The title page, or some other page prefacing the protocol, must 
include signatures, with dates of signing, of all appropriate 
personnel to show approval of the protocol, including, but not 
limited to, the author of the protocol, the personnel responsible 
for the execution of the validation assays and collection of the 
data, the personnel responsible for the data analysis, as well 
as appropriate quality assurance and management.]

The quantitative method characteristics to be validated 
will depend on the nature of the method itself. The reader 
should refer to the table in ICH guideline Q2A, which “lists 
those validation characteristics regarded as the most impor-
tant for the validation of different types of analytical proce-
dures.” The design shown in the example validation matrix 
allows simultaneous assessment of accuracy, precision, and 
linearity.

Ideally, the expected masses are obtained by an alterna-
tive physical  methodology that is highly accurate and precise. 
In the case of using a commercial standard, the vendor should 
provide statistics on the accuracy and precision of the method 
used to obtain/measure the stated label concentration. When 
using a  previously released lot, the expected masses will be 
based on the certificate of analysis concentration for the lot of 
Analyte B used in this validation. In the latter case, the mea-
surement of accuracy is relative to the historical certificate of 
analysis value. The validation protocol needs to state that the 
accuracy measurement is relative to the historical value rather 
than to an independently obtained measurement.

EXAMPLE VALIDATION PROTOCOL

This section presents an example validation protocol. As men-
tioned before, square brackets [ ] are used to discuss content 
in general.
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§1. Purpose and Scope

The purpose of this protocol is to define the method perfor-
mance characteristics to be observed, the design and execu-
tion of the validation experiments, the data analysis, and the 
acceptance criteria for the validation of SOP 123 for use on 
Product W.

[The scope of the document defines the specific product 
and method combination being validated. It also states the 
department responsible for running the assays and the facility 
(or facilities) where the method is being validated. If more 
than one facility is involved then reproducibility of the method 
between laboratories needs to be validated.]

§2. Background

[This section describes the background of the use of SOP 123 
and a brief des cription of the method.] The current range of 
this method for Product W is 50 μg to 150 μg.

§3. Validation Approach

[This section describes the general approach in validating the 
method, lists and defines the validation characteristics to be 
evaluated (refer to Section III. Terms and Definitions).]

To validate SOP 123 for measuring mass of Product W, 
the quantitative method performance characteristics of accu-
racy, precision, linearity, and range will be assessed using the 
validation assays shown in the design matrix over two days 
and using two operators. As per ICH guideline Q2A, the vali-
dation experiments will be run from 40 μg to 180 μg. The test 
lot will be diluted out and concentrated up to specific expected 
masses using the mass cited on certificate of analysis for the 
lot of Product W selected for the validation. The points on the 
Product W curve will be as follows: 40 μg, 50 μg, 70 μg, 90 μg, 
110 μg, 130 μg, 150 μg, and 180 μg.

Accuracy in percent recovery is defined by the ratio of the 
observed test lot mass to the certificate of analysis mass for 
the test lot. Thus, accuracy is relative to the previously mea-
sured mass and not by comparison to an objective measure of 
mass of the test lot.
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Precision of the method is defined by the sum of interme-
diate precision (interday, interoperator, and interassay preci-
sion) and repeatability.

Linearity of the method is assessed by the linear regres-
sion statistics of observed mass against expected mass.

Current range of the method will be verified by acceptable 
Accuracy, Precision, and Linearity (see Acceptance Criteria).

[Other procedural details such as test lot preparation to 
aliquot all the samples needed for the validation experiments 
should also be described briefly in this section of the protocol.] 
Referring to SOP 123, the reportable value is defined as the 
average of the three replicates. For this validation, accuracy, 
 precision, and linearity of the replicate values will be assessed; 
consequently, the precision of the results reported is at the 
replicate level not the reportable value level. [Note this prac-
tice is done for two reasons: first, to conserve resources, and 
second, when it is not possible to repeat an additional assay 
with exactly the same sample preparation. The repeatability 
component of the precision is defined as within-assay variance. 
Using the replicate values yields a within-assay variance.]

§4. Responsibilities and Documentation

[This section, or sections, of the protocol describes the responsi-
bilities of the pharmaceutical or biotechnology company and 
the departments within the company in carrying out a valida-
tion as well as listing the documentation needed for reference 
including SOP 123.]

§5. Training Verification and Documentation

[Record on a Training Record that the personnel executing the 
validation experiments are adequately trained in compliance 
with company quality policies. Additionally, document that 
these personnel have been trained on the validation protocol.]

§6. Test Work

[This section describes the execution of the validation experi-
ments, how this execution may differ from the SOP, how and 
where the data will be recorded, as well as specifying how 
each of the validation characteristics will be evaluated.] In 
assays A, B, C, and D use the method of SOP 123 to determine 
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triplicate measures of mass for Product W. For each point on 
the Product W curve (40 μg, 50 μg, 70 μg, 90 μg, 110 μg, 130 μg, 
150 μg, and 180 μg) record each triplicate measure on the test 
report form.

§6.1. Accuracy

§6.1.1. Data Analysis

For each point on the Product W curve, divide the observed 
mass by the expected mass and express as a  percent. For each 
expected mass, the average percent accuracy will be reported 
with a 95% confidence interval [as per the ICH guideline Q2B].

§6.1.2. Acceptance Criteria

[Acceptance criteria appropriate to the use of the method 
for accuracy are stated in the protocol before the data analysis. 
Often the acceptance criteria are based on design criteria for 
the development of the method or development data.]

For each mass in the tested range observed, average accu-
racy must be between 90% and 110%. [These are hypothetical 
acceptance criteria.]

§6.2. Precision

§6.2.1. Data Analysis

For each mass on the Product W curve, the data will be 
analyzed by variance components analysis (VCA) to  estimate 
the precision components due to InterOperator, InterDay, 
InterAssay, and Repeatability. For each expected mass, the 
precision components will be recorded as a variance, standard 
deviation, and  percent of total precision. Nonzero components 
will be reported with a two-sided 95% confidence interval for 
the standard deviation. Within each mass, total variance is 
defined as the sum of the variance components. Total precision 
will be expressed as a variance, standard deviation, and 
coefficient of variation (%CV) also called the percent relative 
standard deviation or %RSD.

§6.2.2. Acceptance Criteria

[Acceptance criteria appro priate to the use of the method 
for precision are stated in the protocol before the data analysis. 
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Often, the acceptance criteria are based on design criteria for the 
development of the method or development data.]

For each mass in the tested range observed, the total 
%CV must be less than 10%. [These are hypothetical accep-
tance criteria. Note that the precision acceptance criterion can 
be on the standard deviation or some other metric of variabil-
ity, preferably a metric that is somewhat consistent in value 
over the range of the assay.]

§6.3. Linearity

§6.3.1. Data Analysis

Within each of the assays A, B, C, and D, least squares 
linear regression of observed mass will be regressed on expected 
mass. The linear regression statistics of intercept, slope, 
correlation coefficient (r), coefficient of determination (r2), sum 
of squares error, and root mean square error will be reported. 
Lack-of-fit analysis will be performed and reported. For each 
assay, scatter plots of the data and the least squares regression 
line will be presented.

§6.3.2. Acceptance Criteria

For each assay, the coefficient of determination must be 
greater than 0.975. [These are hypothetical acceptance criteria. 
Other metrics for linearity could be used for the acceptance 
criterion. Note that for precise assays, a significant lack-of-fit 
may not be a meaningful lack-of-fit, due to a slight but 
 consistent curve or other artifact in the data. If lack-of-fit is 
used for the acceptance criterion, the requirement should be 
placed on absolute deviation or percent departure from 
linearity rather than statistical significance. Often the 
acceptance criteria are based on design criteria for the 
development of the method or development data.]

§6.4. Range

Range is defined by the interval where the method has demon-
strated acceptable accuracy, precision, and linearity.

§6.5. Other Performance Characteristics

[Other method performance characteristics should be addressed 
as appropriate. The reader is encouraged to refer to ICH Q2A 
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to determine which performance characteristics need to be 
evaluated in the validation. Depending on the characteristics 
addres sed, the validation may need more than one design of 
experiments.]

§7. Validation Matrix

[A matrix of assays is presented to display the study design over 
the appropriate factors. For this example (Table 1), the factors 
are Operator, Day, and Assay. For this example, Assay is defined 
as the interaction between Operator and Day. Note that this 
matrix shows a hierarchical, or nested, model as Assay (sample 
 preparation) is uniquely defined by Operator and Day.]

§8. Attachments and Forms

[This section contains forms for documenting that all training 
requirements have been met, sample preparation instructions 
as necessary to the execution of the validation experiments, 
and data recording forms. Places for signatures for perfor-
mance and review should be included on each form as appro-
priate to company quality and documentation standards. For 
examples, see Tables 2 and 3.]

Table 1 Matrix of Validation Assays

Assay Day Operator Replicates

A 1 I 3
B 1 II 3
C 2 I 3
D 2 II 3

Four assays with three replicates each. Day 1 is a separate day than Day 2.

Table 2 Training Verification to Include Training on Standard 
Operating Procedure (SOP) 123 and Training on This Validation

Name Department List SOP
Training record 

complete
Verified by—
initials/date

Add a section for comments, as well as a place for signatures for the personnel who 
reviewed the  training records and conducted the validation training in accordance 
with company quality standards for training documentation.
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TERMS AND DEFINITIONS

The following gives definitions of method validation charac-
teristics following the references (2,4) ICH Q2A “Text on 
Validation of Analytical Procedures” and ICH Q2B “Validation 
of Analytical Procedures: Methodology.” ICH Q2A identifies 
the validation characteristics that should be evaluated for 
a variety of analytical methods. ICH Q2B presents guide-
lines for carrying out the validation of these characteristics. 

Table 3 Assay Recording Sheet, One for Each Assay

Assay Data Recording Sheet for Validation of SOP 123
Copy 1 for Each Assay

Date of assay: 
Assay validation ID: 
Operator: 
Sample lot number: 

Sample
Expected 
mass (μg)

Response per replicate 
(absorbance, light units, etc.)

Replicate calibrated 
value of mass (μg)

1 2 3 1 2 3

Standard 40
50
70
90

110
130
150
180

Test lot 40
50
70
90

110
130
150
180

Include rows/columns for standard curve and other data normally recorded during 
the execution of standard operating procedure (SOP) 123.
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The validation characteristics of accuracy, precision, and 
 linearity were presented in the example protocol of the previ-
ous section.

Accuracy

Accuracy is a measure of how close to truth a method is in its 
measurement of a product parameter. In statistical terms, 
accuracy measures the bias of the method relative to a stan-
dard. As accuracy is a relative measurement, we need a defi-
nition of “true” or expected value. Often, there is no “gold 
standard” or independent measurement of the product para-
meter. Then, it may be appropriate to use a  historical mea-
surement of the same sample or a within-method control for 
comparison. This must be accounted for in the design of exper-
iments to be conducted for the validation and spelled out in 
the protocol. Accuracy is measured by the observed value of 
the method relative to an expected value for that observation. 
Accuracy in percent can be calculated as ratio of observed to 
expected results or as a bias of the ratio of the difference 
between observed and expected to the expected result. For 
example, suppose that a standard one-pound brick of gold is 
measured on a scale 10 times and the average of these 10 
weights is 9.99 lbs. Then calculating accuracy as a ratio, the 
accuracy of the scale can be estimated at (9.99/10) × 100% = 
99.90%. Calculating the accuracy as a bias then [(9.99 – 10)/10] 
× 100% = −0.10% is the estimated bias. In the first approach 
ideal accuracy is 100%, and in the second calculation ideal 
bias is 0%.

Precision and Ruggedness

Precision is a measure of how variable a method is in its mea-
surement of a product parameter under normal usage. In statis-
tical terms, precision is measured by the variance of the method. 
Additionally, the typical sources of variability are accounted for 
in assessing precision; these are random factors external to the 
method, such as analysts, days, and changing assay “hardware” 
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(e.g., gels or columns). Variance components measure the con-
tribution of each of these external factors to the  variability of the 
method’s results on the same sample of product. To estimate the 
variance components, the design of validation experiments must 
be balanced with respect to these factors.

Precision components are defined at three levels: repro-
ducibility, intermediate precision, and repeatability. Repro-
ducibility is the variability of the method between laboratories 
or facilities. However, as a laboratory is not “randomly 
selected” from a large population of facilities, laboratory is a 
fixed effect. Consequently, the assessment of reproducibility 
is a question of comparing the average results between labo-
ratories. Additionally, the variation observed within labora-
tory should be compared to ensure that laboratory does not 
have an effect either on the average result of the method or 
on the variability of the method. To assess reproducibility, 
conduct the same set of validation experiments within each 
laboratory and compare both the accuracy results and the 
precision results. If the differences are meaningful, analysis 
of variance (ANOVA) tests can be conducted to determine 
whether there is a statistically significant laboratory effect 
on the mean or on the variance of the method. For simplicity, 
the validation discussed within this chapter will not consider 
reproducibility and only one  laboratory is considered.

Intermediate precision components typically include 
day, operator, and assay. Day is a random effect that cap-
tures random environmental changes that are not controlled 
and may have an effect on the assay result. Operator, usually 
modeled as a random effect, captures the variation in assay 
results due to change in personnel running the assay. Assay 
captures the variation one would expect from one complete 
run of the method to the next complete run of the method. 
Thus, assay captures the random variation due to slight per-
turbations in the sample preparation from assay run to assay 
run (when run by the same operator on the same day). Often, 
it is not possible for each operator to run more than one assay 
on each day; however, the validation experiments can be desig-
ned to estimate this variance component under a reasonable 
assumption.
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ICH Q2A defines repeatability as the variability of the 
assay results “under the same operating conditions over a 
short interval of time. Repeatability is also termed intra-assay 
precision.” A reportable value of an assay is often the average 
of a specified number of replicate values, where the replicates 
are processed using the same sample preparation. Thus, it is 
not possible to obtain a true repeat of the assay’s reportable 
value. Repeatability can be modeled as the within-assay vari-
ability of the replicates; however, it should be noted that this 
precision is at the level of the replicate and not at the level of 
the reportable value. If the reportable value is an average of 
K replicates the variance of the reportable values will be less 
than that of the replicates by a factor of 1/K (the standard 
deviation will be less by a factor of (1/ √ 

__
 K   ).

Ruggedness is not mentioned in the ICH guidelines. The 
USP (5) defines ruggedness as “the degree of reproducibility of 
test results obtained by the analysis of the same samples 
under a variety of normal test conditions.” Thus, ruggedness 
also addresses the typical external changes in the execution of 
the method such as change in day, operator, or assay prepara-
tions. Ruggedness and intermediate precision are two sides 
of the same coin, but they measure different concepts. Inter-
mediate precision is measured with a standard deviation or 
%RSD. Ruggedness is the lack of a factor effect. “Changing the 
instrument has no effect on the results” is a statement address-
ing ruggedness. Ruggedness is modeled as a fixed effect mea-
suring the change in average results due to a change in 
instrument.

Linearity

A method is “linear” or operating in the linear region if the 
measurement of the product parameter is proportional to the 
quantity being measured. Although there seems to be some 
debate regarding this issue, “linearity” does not refer to the 
linear range of a calibration curve used within the method or 
assay for calculation of the reportable value, but rather to the 
proportionality of the method’s reportable value to the  quantity 
being measured. Here too, it is important that the validation 
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experiments are balanced both with respect to the variance 
components and also over the range of method validation. 
Thus, the levels of expected input should be evenly spaced 
across the range of the method with an equal number of obser-
vations at each level.

Robustness

Robustness refers to the effect on the assay response due to 
minor perturbations in sample preparations. In contrast to 
precision, robustness refers to the minor  perturbations of fac-
tors internal to the assay (e.g., incubation time, temperature, 
or amount of reagent) whereas intermediate precision and 
ruggedness refer to factors necessary in the performance of 
the method that are external to the assay (day-to-day changes, 
operator changes, instrument changes). In method develop-
ment, acceptable ranges for assay input parameters should be 
found where the assay response stays fairly constant. In these 
ranges the method is said to be robust. To quote for Q2B of the 
ICH Guidelines: “The evaluation of robustness should be con-
sidered during the development phase and depends on the 
type of procedure under study. It should show the reliability of 
an analysis with respect to deliberate variations in method 
parameters (2).”

DESIGN OF EXPERIMENTS

Terms and Definitions

Factors, Levels, and Treatments

Factors are the major categories of a design. The levels of 
each factor are the “values” or “versions” that the factor can 
ass ume. Treatments are the combinations of the factor levels 
that are assigned to the experimental units. In our validation 
experiment there are factors of “operator” and “day,” each 
having two different levels. There are four treatments in the 
example validation matrix (refer to Table 1 in the Example 
Protocol).
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Fixed Effects, Random Effects, Main Effects, and Interactions

Factors are fixed if the “values” of the levels are given or do 
not vary. Factors are random if the value is, for pragmatic 
purposes, randomly selected from a population of all values. 
To illuminate in an example: if a small lab has two analysts 
that will always be running the assays then the factor “ana-
lyst” is considered fixed with two levels (one level for analyst 
1, the other level for analyst 2); however, if the lab is large 
and/or there is a high turnover in analysts then for each run 
of an assay the “analyst” could be regarded as selected at 
random among a population of trained analysts.

In a statistical model, fixed effects have an influence on 
the mean value or average of the method’s response while 
random effects have an influence on the variability of the 
method. Fixed effects are assessed in the context of accuracy. 
Random effects are assessed in the context of precision and 
become the inter mediate precision components. In designing 
the validation design matrix the  validation assays need to be 
balanced over both the fixed effects and the random effects. A 
mixed effects model (or design) occurs when both fixed effects 
and random effects are present (6).

Only one lot of well-characterized product or reference 
standard should be used in the validation. Product lot or batch 
is not a factor in method validation. Factors that are typically 
assessed are instrument or machine, analyst or operator, day, 
and other factors external to the method itself that come into 
play in the typical running of an assay.

Main effects of a factor are the differences in average 
response between the levels of the factor averaged over all 
other levels of the other factors. For example, if the factor 
machine has two levels, machine 1 and machine 2, the main 
effect, due to machine, would be the difference in average 
response from machine 1 and the average response from 
machine 2 (averaged over all other factors). An interaction 
occurs when the effect of one factor is dependent on the level 
of another factor. For example, if there is a significant increase 
in average response between the low and high levels of factor 
A when factor B is low and there is a significant decrease in 
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average response between the low and high levels of factor 
A when factor B is high then there is an interaction between 
factor A and factor B. Figure 1 shows an interaction between 
time and temperature.

Nested and Crossed Factors

Factor A is nested within factor B if the levels of factor 
A change with the level of factor B. For example, if batches or 
lots are tested by taking samples from the production line and 
then aliquots are taken from each sample, then the aliquots 
are nested within the samples which are nested within the 
batches (7). Factors C and D are crossed if all levels of factor 
C can occur with all levels of factor D. For example, in the 
sample protocol of section IIB, days and operators are crossed, 
as each of the two operators perform an assay on each of two 
the days.

Aliasing and Confounding

If each level of one factor only occurs at a specific level of 
another factor, then the two factors are said to be confounded. 
When confounding or aliasing occurs, the data analysis cannot 
distinguish between the effects of the two confounded factors. 

Figure 1 Interaction between time and temperature. The response 
profile to time depends on the temperature.
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If a significant effect is apparent it is impossible to tell which 
factor is responsible for the effect. In designing experiments, 
the number of treatments or experimental trials can be 
reduced by intentionally aliasing one factor with another. For 
example, a main effect can be aliased with a high-order inter-
action, especially if it is a reasonable assumption that the 
interaction effect does not exist or is negligible.

Experimental Designs

In this section, three categories of experimental design are 
considered for method validation experiments. An important 
quality of the design to be used is balance. Balance occurs 
when the levels each factor (either a fixed effects factor or a 
random effects variance component) are assigned the same 
number of experimental trials. Lack of balance can lead to 
erroneous statistical estimates of accuracy, precision, and lin-
earity. Balance of design is one of the most important consid-
erations in setting up the experimental trials. From a heuristic 
view this makes sense, we want an equivalent amount of 
information from each level of the factors.

Full Factorial Designs

A full factorial design is one in which every level of each factor 
occurs for every combination of the levels of the other factors. If 
each of n factor has two levels,  frequently denoted “+” for one 
level and “–” for the other level, then the number of treatments 
is two raised to the nth power. Full factorial designs when each 
factor has the same number of levels are referred to as kn facto-
rial designs, where k is the number of levels and n is the number 
of factors, as kn is the number of treatments needed. If factor 
A has three levels, factor B has two levels, and factor C has 
three levels then a full factorial design has 3 × 2 × 3 = 18 treat-
ments or experimental trials.

The treatments of a design (or the experimental trials) 
can be represented in a design matrix. Each row of the matrix 
represents a treatment; each column represents the level of 
each factor. A full factorial design for three factors, factor A, 
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factor B, and factor C, each with three levels, is shown in the 
design matrix  presented in Table 4.

Fractional Factorial Designs

Often a full factorial design requires too many resources and 
an experimental design with fewer treatments is required. 
Fractional factorials can reduce the number of experimental 
trials by aliasing one or more of the factors with other factors 
or interactions of factors. A fractional factorial of a full facto-
rial design 2n cuts the number of trials or treatments by1/2, 
1/4, or 1/2p. When the number of experimental trials is reduced 
from 2n by a factor of 1/2p. the design is referred to as a 2n–p 
fractional factorial. The full factorial design (23 factorial design 
with eight treatments) presented in Table 4 can be reduced to 
a 23–1 fractional factorial design with four experimental trials 
if factor C is aliased with the two-factor interaction of factors 
A and B. The resulting design is presented in Table 5. Note 
that the effect of factor C is confounded with the interaction of 
factors A and B. This can be observed in the design matrix by 
multiplying the levels of factors A and B to get the level of 
factor C (+ × + = +, + × − = −, and − × − = +).

The resolution of a design is a categorization of the alias-
ing in the design. For resolution III design, main effects are 
not aliased with each other but each main effect is aliased 

Table 4 Full Factorial Design for Three Factors, Factors A, B, 
and C, Each with Two Levels, Low (−) and High (+)

Treatment Factor A Factor B Factor C

1 − − −
2 + − −
3 − + −
4 + + −
5 − − +
6 + − +
7 − + +
8 + + +

Every level of each factor occurs with every level of the other factors and combination 
of the other two factors.
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with two-factor interactions. In a resolution IV design, some 
main effects are aliased with three-factor interactions and 
two-factor interactions are aliased with each other (2–4). The 
design shown in Table 5 is resolution III, as main effect of 
factor C is aliased with the interaction between factors A and 
B. Also, A is aliased with B and C, and B is aliased with A and 
C. Resolution of design is discussed in more detail in most 
texts on experimental design including John (6), Box, Hunter, 
and Hunter (7), and Kuehl (8).

Plackett-Burman Designs

Plackett-Burman designs are a group of orthogonal array 
designs of resolution III, where the number of experimental 
trials is a multiple of four, but is not a power of two. In most 
Plackett-Burman designs each factor has exactly two levels. 
These designs are useful as they require fewer resources. 
Placket-Burman designs are used to estimate main effects 
only. The reader is referred to the references (6–8) on experi-
mental design for listings of Plackett-Burman designs.

Designs for Quantitative Method Validation

Full factorial designs can be used in quantitative method val-
idation. With very few factors this is a feasible design. A 
simple way to display the experiment necessary for the vali-
dation is to display the assay runs in a table or matrix. For 
instance, suppose a method is run on two different machines 
and the goal is to assess intermediate precision components. 
We have the random effects of operator and day and a fixed 

Table 5 Fractional Factorial Design for Three Factors, Factors A, 
B, and C, Each with Two Levels, Low (−) and High (+)

Treatment Factor A Factor B Factor C

1 − − +
2 + + +
3 − + −
4 + − −

Factor C is aliased with the interaction of factors A and B (refer to text).
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effect due to machine. If the factors operator and day each 
have two levels, the full factorial design is shown in Table 4 
with factor A as operator, factor B as day, and factor C as 
machine. Eight assays will be run; the replicates of the assays 
will be used in estimating repeatability. All factors are crossed 
with each other.

The full factorial design may not be practical. Perhaps it 
is not possible for one operator to run two assays on one day. 
Then a fractional factorial design can be used. The design 
shown in Table 5 is resolution III design with four experimen-
tal trials. As machine is aliased with the interaction between 
operator and day, the main effect due to machine can be esti-
mated only if we assume there is negligible interaction between 
operator and day. Often, interactions can be assumed to 
be negligible based on prior knowledge or the science that is 
known about the situation.

The design shown in Table 5 is also the design of the 
example protocol. In the example protocol the third factor is 
assay. The effect of assay is aliased with the interaction of 
operator and day, and assay is also nested within the interac-
tion. Note that if the design of Table 4 were used, and two 
assays were run for each operator and day combination, then 
assay would still be nested within the interaction. Each time 
an assay is run, it is a different assay; hence, the number of 
levels of the factor assay is just the number of assays that are 
run. However, running two assays within each operator and 
day combination will give a better empirical  estimate of inter-
assay variability but assay effect cannot be estimated inde-
pendently of the interaction. This is because assay takes on a 
different “value” each time the assay is run. (In contrast, in 
the previous example the third-factor machine is crossed with 
the factors operator and day; consequently, the machine effect 
can be estimated independently of operator and day effects.)

For quantitative methods, the ICH guidelines recommend 
validating a range that extends 20% below the lower end of the 
range and 20% above the upper end of the range (for content 
uniformity the range is extended to 70–130% of the SOP range). 
For the linearity portion of the method, National Committee 
for Clinical Laboratory Standards [NCCLS (9)] recommends at 
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least five levels evenly spaced across the range to be validated. 
For example in validating a method that measures concentra-
tion of an analyte, the sample being tested would be diluted 
out to (or concentrated to) five expected concentrations evenly 
spaced between 20% below the lower limit of the method’s 
stated range and 20% above the upper limit of the method’s 
stated range. In an assay that can measure multiple concen-
trations simultaneously, each assay would test these five 
diluted samples in K-replicates (within-assay replicates; the 
assay’s reportable value could be the average of these K repli-
cates). If this procedure is repeated using I operators over J 
days then the method characteristics of accuracy, precision, 
and linearity can be assessed with one set of I × J assays. In 
essence, the factor concentration is crossed with the other fac-
tors as each of the five concentrations is run in all of the assays. 
In the example protocol, eight levels of mass are used.

STATISTICAL ANALYSES

The experimental design selected, as well as the type of fac-
tors in the design, dictates the statistical model to be used for 
data analysis. As mentioned previously, fixed effects influence 
the mean value of a response, while random effects influence 
the variance. In this validation, the model has at least one 
fixed effect of the overall average response and the intermedi-
ate precision components are random effects. When a statisti-
cal model has both fixed effects and random effects it is called 
a mixed effects model.

The statistical software package SAS® (SAS Institute 
Inc., Cary, North Carolina, U.S.A.) has a module [PROC 
MIXED (10)], which analyzes mixed effects models and pro-
vides estimates for both the fixed (shifts on the mean) and 
random effects (variance components estimates).

Analysis of accuracy and precision can be accomplished 
using the same statistical model with a slightly different 
response variable. For accuracy, the response variable (here 
this is the replicate value and differs from the reportable value 
of the assay as run outside of the validation) is observed mass 
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divided by expected mass as a percentage. For precision the 
response variable is observed mass. Both the accuracy and the 
precision results are reported for each expected mass. The lin-
earity assessment uses the entire data set over all expected 
masses. Consequently, the root mean square error (RMSE) 
from the linearity analysis can be viewed as measurement of 
overall repeatability.

ANOVA can be used to test whether the fixed effects are 
significant. For example, if there is a factor machine with two 
levels (representing two machines), an ANOVA can be used to 
estimate machine effect. If the difference between the average 
responses for each machine is not meaningfully different, and 
the variance components within each machine are similar, 
then the variance components can be analyzed averaging over 
the machines. If there is a meaningful difference between the 
two observed machine averages, then an F-test can be used to 
test whether machine effect is significant.

Accuracy is estimated from the fixed effects components 
of the model. If the overall mean is the only fixed effect, then 
accuracy is reported as the estimate of the overall mean accu-
racy with a 95% confidence interval. As the standard error 
will be calculated from a variance components estimate includ-
ing intermediate precision components and repeatability, the 
degrees of freedom can be calculated using Satterthwaite’s 
approximation (6). The software program SAS has a proce-
dure for mixed model analysis (PROC MIXED); PROC MIXED 
has an option to use Satterthwaite’s degrees of freedom in cal-
culating the confidence interval for the mean accuracy. An 
example program and output is shown later for the example 
protocol.

Precision components are estimated using the random 
effects of the model. There are a number of ways to estimate 
the precision components (or variance components). Variance 
components are estimates of variances (variance = standard 
deviation squared) and consequently are restricted to being 
nonnegative. One approach is to conduct an ANOVA and solve 
for the variance components using the theoretical composition 
of the expected mean squares (called method of moments esti-
mates or ANOVA estimates). The ANOVA method is shown in 
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many textbooks, including Searle et al. (11) which provides an 
in-depth discussion of variance components estimation. Ano-
ther method is to use maximum likelihood estimation (MLE). 
Both of these approaches have drawbacks. ANOVA estimates 
can be negative as they are a linear combination of sums of 
squares and there is nothing inherent in restricting the result-
ing estimates to be nonnegative. Maximum likelihood esti-
mates can be biased as the estimators do not factor in the 
number of fixed effects being estimated in the model. A third 
approach is to use maximum likelihood and restrict the domain 
of the variance estimates to nonnegative values by “estimat-
ing variance components based on residuals calculated after 
fitting by ordinary least squares just the fixed effects part of 
the model” (11); this is known as restricted maximum likeli-
hood estimation (REML). If the design is  balanced (i.e., there 
are the same number of assays run per each day, per each 
operator, and so on) and the ANOVA estimates are nonnega-
tive, then theoretically the REML estimates and the ANOVA 
estimates agree. SAS’s PROC MIXED has options for all of 
these methods of estimation. The example protocol analysis 
shows use of REML. For any of these methods, it is very impor-
tant that the original design of experiments is balanced to get 
statistically sound estimates of variance components.

The basic idea behind variance components estimation is 
that the variability of the data is parsed out to the random 
effects of the model. For example, operator-to-operator vari-
ability can be assessed roughly by calculating the standard 
 deviation of the operator-specific averages. Thus, it is clear 
why balance is very important; if the data are not balanced 
then we are comparing averages from  differing number of 
values, thus the average with the smaller sample size is more 
variable than that with the larger sample size (i.e., we are 
mixing apples with oranges).

Total precision is defined as the sum of the precision com-
ponents. This summation takes place on the variance scale 
(variance = standard deviation squared). In theory, variances 
from independent terms in a model add up to total variance. 
See the precision analysis in the validation analysis example 
of the next section.
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Linearity is analyzed using least squares regression of 
the observed responses against the expected responses, or the 
regression of the observed responses against the amount of 
analyte in the sample. The linearity here is of the reportable 
value versus the amount of analyte in the sample. Note, in the 
example protocol the responses are the replicate values for 
each assay at each mass; the average of three within-assay 
replicates is the reportable value (at each mass) of SOP 123 
(in release testing, only one reportable value, the average of 
three replicates, is reported as the mass of the sample is 
unknown). If the entire range is assayed in each assay (as in 
the example validation), then linearity can be assessed within 
each assay or over all assays. If linearity is assessed using all 
the data then the RMSE can be used as a measure of overall 
precision as all the assays over all days and operators are rep-
resented. If linearity is assessed within each assay then the 
RMSE is another measure of repeatability (measurement of 
error variability within assay).

When there is more than one observation (whether it be 
replicate values or more than one reportable value over a 
number of assays) at each level of the analyte, then a lack-of-
fit analysis can be conducted. This analysis tests whether the 
average response at each level of the analyte is a significantly 
better model for average assay response than the linear model. 
A significant lack-of-fit can exist even with a high correlation 
coefficient (or high coefficient of determination) and the maxi-
mum deviation of response from the predicted value of the 
line should be assessed for practical significance.

EXAMPLE VALIDATION DATA ANALYSIS

The data are collected and recorded in tables (Tables 6A–D for 
hypothetical data). The validation characteristics of accuracy, 
precision, and linearity are analyzed from the data for this 
example validation.

Model for Accuracy and Precision

The statistical model used to analyze both accuracy and preci-
sion is a mixed effects model. Separately for each expected 
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mass of 40 μg, 50 μg, 70 μg, 90 μg, 110 μg, 130 μg, 150 μg, and 
180 μg:

Yijk = μ + Opi + Dayj + Assay (Op × Day)ij + εijk (1)

Here, Y is the response variable. For accuracy, Y is observed 
mass divided by expected mass expressed as a percent, % 
accuracy (note that this is measuring percent recovery against 
an expected value). For precision, Y is observed mass. The 
term μ is a fixed effect representing the population overall 
average mass for each expected mass. The term Op is the 
random component added by operator i; Day is the random 
component added by day j; and Assay is nested in the interac-
tion of operator and day. The term ε is the random error of 
replicate k of the assay performed by operator i on day j.

Table 6A Data from Assay A for Example Validation

Operator Day Replicate Expected Observed

1 1 1 40 38.7398
1 1 2 40 38.6092
1 1 3 40 39.0990
1 1 1 50 49.4436
1 1 2 50 48.7904
1 1 3 50 48.6924
1 1 1 70 70.6760
1 1 2 70 69.5980
1 1 3 70 70.2180
1 1 1 90 88.7400
1 1 2 90 87.7280
1 1 3 90 88.4780
1 1 1 110 106.3140
1 1 2 110 105.2700
1 1 3 110 106.3780
1 1 1 130 123.5940
1 1 2 130 122.5820
1 1 3 130 122.1900
1 1 1 150 138.5220
1 1 2 150 138.9480
1 1 3 150 138.9480
1 1 1 180 172.9140
1 1 2 180 172.2600
1 1 3 180 173.7300
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Average accuracy is estimated by the overall observed 
accuracy. The parameter being estimated is μ. The standard 
error of this estimate is a function of the variance components 
for operator, day, assay, and repeatability.

SAS PROC MIXED is used to analyze the data. For accu-
racy, the SAS code used is:

*SAS code for Accuracy;
PROC MIXED DATA = example CL;
CLASS oper day assay;
MODEL acc = / solution cl ddfm = satterth;
RANDOM oper day assay;
BY exp;
RUN

Table 6B Data from Assay B for Example Validation

Operator Day Replicate Expected Observed

1 2 1 40 38.0584
1 2 2 40 38.1000
1 2 3 40 38.0450
1 2 1 50 47.6778
1 2 2 50 47.7412
1 2 3 50 48.1222
1 2 1 70 67.4260
1 2 2 70 66.9500
1 2 3 70 66.9500
1 2 1 90 86.7940
1 2 2 90 85.6180
1 2 3 90 86.1580
1 2 1 110 103.4300
1 2 2 110 101.6200
1 2 3 110 102.0960
1 2 1 130 118.4780
1 2 2 130 117.4940
1 2 3 130 118.2260
1 2 1 150 134.7020
1 2 2 150 132.1940
1 2 3 150 132.5440
1 2 1 180 179.2500
1 2 2 180 172.1000
1 2 3 180 174.5000
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In the code, “oper” reads in the level of operator, “day” reads 
in the level of day, “assay” reads in the assay, “acc” is Y for 
accuracy and is defined by the ratio of observed mass to 
expected mass (“exp”). Note that the “BY exp” the procedure is 
run separately for each level of the expected mass using “exp” 
as the variable name. In this manner, the precision of the 
accuracy and the variance components are estimated inde-
pendently at each level of the expected mass. Thus, we obtain 
“picture” of the assay’s performance characteristics across the 
operational range. As assay is nested in the interaction 
between operator and day, the same analysis can be coded 
used “oper* day” in place of “assay” in the previuos code. The 
“CL” and “cl” in the procedure line and model statement are 

Table 6C Data from Assay C for Example 
Validation

Operator Day Replicate Expected Observed

2 1 1 40 41.7500
2 1 2 40 43.2800
2 1 3 40 43.5100
2 1 1 50 48.1538
2 1 2 50 47.9650
2 1 3 50 48.3110
2 1 1 70 67.9920
2 1 2 70 67.8340
2 1 3 70 68.0220
2 1 1 90 88.6140
2 1 2 90 87.1980
2 1 3 90 86.9780
2 1 1 110 104.1140
2 1 2 110 103.3580
2 1 3 110 103.6100
2 1 1 130 119.9580
2 1 2 130 119.4560
2 1 3 130 119.2360
2 1 1 150 136.9660
2 1 2 150 133.6340
2 1 3 150 134.3260
2 1 1 180 179.1500
2 1 2 180 178.2500
2 1 3 180 178.9100
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calls for confidence limits. In the model statement “ddfm = 
satterth” calls for Satterthwaite’s degrees of freedom (see Ref. 
6 for a discussion of Satterthwaite’s approximation) to be used 
in calculating the confidence limits.

Model (1) is used for precision analysis. For precision, Y 
is the observed mass (rather than observed mass divided by 
expected mass). Each random effects component (operator, 
day, assay, and error or repeatability) contributes to the total 
variance of Y. The total variance of Y is defined as the sum of 
the variance components. If σ  2   Oper , σ  2   Day , σ  2    Assay , and σ  2   ε   are the 
variance components for operator, day, assay, and repeatabil-
ity, respectively, then total variance is σ  2   Oper + σ  2   Day + σ  2    Assay + σ  2   ε  .

Table 6D Data from Assay D for Example Validation

Operator Day Replicate Expected Observed

2 2 1 40 41.4500
2 2 2 40 41.7500
2 2 3 40 41.6000
2 2 1 50 48.5228
2 2 2 50 49.1456
2 2 3 50 49.3636
2 2 1 70 68.8860
2 2 2 70 70.0380
2 2 3 70 70.1620
2 2 1 90 86.9140
2 2 2 90 87.9740
2 2 3 90 88.5340
2 2 1 110 104.8500
2 2 2 110 104.5680
2 2 3 110 104.9740
2 2 1 130 120.3240
2 2 2 130 120.0440
2 2 3 130 121.3820
2 2 1 150 136.1720
2 2 2 150 136.7960
2 2 3 150 136.6380
2 2 1 180 173.2800
2 2 2 180 183.2000
2 2 3 180 175.3200
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For precision, the SAS code used is shown next. Note that 
the only change is the Y value; for precision, Y is observed 
mass, called “obt” in the code.

*SAS code for Precision;
PROC MIXED DATA = example CL;
CLASS oper day assay;
MODEL obt = / solution cl ddfm = satterth;
RANDOM oper day assay;
BY exp;
RUN

This program will give variance estimates for each of the pre-
cision components along with two-sided 95% confidence inter-
vals for the population variance component for each expected 
mass. SAS PROC MIXED will provide ANOVA estimates, 
maximum likelihood estimates, and REML estimates; the 
default estimation, used here, is REML.

Method of moments estimates (also known as ANOVA 
estimates) can be calculated directly from the raw data as 
long as the design is balanced. The reader is referred to Searle 
et al. (11) for a thorough but rather technical presentation of 
variance components analysis. The equations that follow 
show the ANOVA estimates for the validation example. First, 
a two-factor with interaction ANOVA table is computed 
(Table 7). Then the observed mean squares are equated to the 
expected mean squares and solved for the variance compo-
nents (Table 8 and the equations that follow).

The expected mean squares are equated to the observed 
mean squares (those from the data) and solved for the vari-
ance components. Thus, σ̂  2   ε   = MSE is the variance estimate 
for repeatability, σ̂  2    Assay  =   MSA – MSE _________ m   is the variance estimate 
for assay, σ̂  2   Day  =   MSD – MSA __________ a·m    is the variance estimate for day, 
and σ̂  2   Oper  =  MSO – MSA __________ b·m   is the  variance estimate for operator. 
To express as standard deviations, take the square root of 
each. The ANOVA estimates are applicable when the design 
is balanced and there are no missing data values; using this 
method with missing data or an unbalanced design will result 
in misleading erroneous variance estimates.
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Linearity Analysis

For the example validation, linearity will be analyzed within 
each assay and across all four assays. For the second analysis, 
as mentioned before, the RMSE can be used as a measure of 

Table 7 Analysis of Variance (ANOVA), Sum of Squares and Mean 
Square Formulae for a Two-Factor Mixed Model with Interaction for 
the Validation Matrix of Tables 4 or 5 to be Used in ANOVA 
Variance Component Estimation

Source df Sum of squares
Mean 
square

Operator a – 1 SSO = ∑b · m( y=i.. − y≡...)
2 MSO =   SSO ____ 

dfO
  

Day b – 1 SSD = ∑a · m( y=.j. − y≡...)
2 MSD =   SSD ____ 

dfD
  

Assay = operator 
× day

(a – 1) × 
(b – 1)

SSA = ∑∑m( y–ij. − y–i.. − y–.j. + y≡...)
2 MSA =   SSA ____ 

dfA
  

Repeatability ab(m – 1) SSE = ∑∑∑( yijk − y≡...)
2 MSE =   SSE ____ 

dfE
  

Total abm–1 SST = ∑∑∑( yijk − y≡...)
2

Here, a bar over the Y indicates averaging over the missing subscript(s); the subscript 
“i” is an index for operator, the subscript “j” is an index for day, assay is indexed by 
the level of “i” and “j,” and “k” is an index for the replicate within each assay. In the 
example, the grand average is y≡..., the average for operator “i” is y=i. =  ∑ 

j
   
 

    ∑ 
k
   
 

  yijk  /6, the 
average of the six replicates produced by operator “i” for i = 1, 2, and the average for 
assay “i, j” is the average of the three replicates of operator “i” on day “j.” The design 
must be  balanced for these formulas to apply.
Abbreviations: a, number of operators; b, number of days; m, number of replicates; df, 
degrees of freedom. 
Source: From Ref. 11.

Table 8 Expected Mean Squares for the Two-Factor with 
Interaction Analysis of Variance Table Shown in Table 7

Source Mean square Expected mean square

Operator MSO =   SSO
 _____ 

dfO
  σ  2   

ε
    + m ⋅ σ  2    Assay  + b ⋅ m ⋅ σ  2   Oper 

Day MSD =   SSD
 _____ 

dfD
  σ  2   

ε
    + m ⋅ σ  2    Assay  + a ⋅ m ⋅ σ  2   Day 

Assay = operator × day MSA =   SSA
 _____ 

dfA
  σ  2   

ε
    + m ⋅ σ  2    Assay 

Repeatability MSE =   SSE
 _____ 

dfE
  σ  2   

ε
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overall precision. For the first analysis, the RMSE is a mea-
sure of repeatability across all masses within each assay. The 
model for linearity is:

Observed mass = α + β · Expected mass + ε (2)

Here, α is the population intercept and β is the population 
slope of observed mass regressed on expected mass. The error 
term, ε, is the residual added to the population line to obtain 
the observed mass. Least squares estimation (traditional 
regression estimation) will yield estimates of α and β, as well 
as an estimate for the standard deviation of ε (RMSE). These 
estimates form the sample regression line for predicting 
observed mass (predicted mass or Ŷ ):

Ŷ  = α̂  + β̂  · Expected mass (3)

The RMSE is standard deviation of the residuals (residual = 
observed mass –  predicted mass).

To test for lack-of-fit, a classification variable is added to 
the model representing the expected mass group:

Observed mass = α + Mass class + β · Expected Mass + e (4)

Note that this analysis can only be performed if there are rep-
licate values for each level of expected mass (mass class in the 
previous model). The model testing lack-of-fit is shown next. 
An ANOVA F-test is used to test whether the classification 
variable is significant, indicating significant (but not neces-
sarily a meaningful) lack-of-fit to the linear model. In essence, 
this test asks the question “Do the averages at each expected 
mass fit the data better than the linear regression model?” If 
the method is very precise it will not take a very large devia-
tion of observed mass from predicted mass to result in signifi-
cant lack-of-fit. As a result, the deviations themselves should 
be analyzed for a meaningful lack-of-fit.

The two programs (SAS PROC GLM) for linearity are 
shown next for analyzing linearity within each of the four 
assays. The first gives the least squares regression estimates 
and the regression statistics; “obt” is the observed mass and 
“exp” is the expected mass for each of the eight masses assayed. 
The second program tests for lack-of-fit to the linear model; 
a new classification variable “expclass” has eight settings 
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corresponding to the eight expected masses (40 μg, 50 μg, 
70 μg, 90 μg, 110 μg, 130 μg, 150 μg, and 180 μg).

* To give least squares estimates for linear regression;
PROC GLM data = example;
Title 'obt = obtained mass, exp = expected mass';
MODEL obt = exp;
BY assay;
OUTPUT out = robt p = yhat r = res;
RUN;
*To test lack-of-fit to linear model;
PROC GLM data = example2;
Title 'Lack of fit analysis';
CLASS expclass ;
MODEL obt = exp expclass/solution;
BY assay;
RUN

The output statement in the first program creates a file with 
the data, the predicted masses by the linear regression model 
(Yˆ), and the residuals of the observed values minus the pre-
dicted values for each replicate at each expected mass. These 
deviations can be assessed for meaningful lack-of-fit.

Example Protocol Analysis Results

This section shows the analysis results for the data of the vali-
dation example (Tables 6A–D). The results of the statistical 
analysis should be reported in a manner that is in accordance 
with company quality standards. For example, documentation 
of data auditing of the data listing from SAS against the raw 
data, a complete referencing to the electronic storage locations 
of the data, the SAS program, the program output, and a hard-
copy write up of the statistical analysis approach should all be 
maintained with the validation report. For some companies, 
this usually results in a statistical report that is on the order 
of 150 to 200 pages in length (the entire SAS output is often 
included with the report). The tables and graphs reported as 
well as some examples of SAS output will be presented here. 
The report should enable another statistical analyst to repro-
duce the analysis at a later date.
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Accuracy

The model used for accuracy (1) is shown in the previous sec-
tion (Example Protocol section IIB); recall that accuracy for 
each data point is defined as Accuracy = (Observed mass / Ex-
pected mass) × 100%. The assay-specific averages for accuracy, 
the across-assay average, standard error of the across-assay 
average, Satterthwaite degrees of freedom, and 95% confi-
dence intervals are shown in Table 9. Note that because 
Satterthwaite degrees of freedom are a linear combination of 
sums of squares, they can assume noninteger values.

An Excel chart showing the average accuracy and 95% 
confidence limits for each of the expected masses is shown 
next (Fig. 2). The confidence intervals tend to be wide if one 
(or more) of the intermediate precision components has a large 
contribution to variability.

The acceptance criteria for accuracy is that each obser-
ved average accuracy must be within the interval (90%, 
100%) for the expected masses within SOP 123’s stated range 
of 50 to 150 μg. As all the observed averages are within the 
interval (90%,100%), the acceptance criteria for accuracy 
have been met.

Precision

The statistical model for precision is shown in equation (1). 
For precision, Y is defined as observed mass. For each of the 
eight expected masses the precision components are reported 
as variances for each component. The total variance is the 
sum of the component variances. The component percent of 
total is calculated on the variance scale as: (Variance compo-
nent estimate / Total variance) × 100%. The square root of each 
variance estimate is taken and reported as the standard 
 deviation. Confidence intervals were generated by SAS and 
reported on the variance scale; square roots of the confidence 
limits were calculated and reported as the confidence inter-
val for the component standard deviation. The coefficient of 
variation (%CV) is  calculated as: (Observed component std 
dev / Observed  average) × 100%. Table 10 shows the precision 
results for the example validation. The acceptance criteria for 
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Figure 2 Excel chart showing average accuracy with 95% confi-
dence limits.
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precision were that %CV must be at most 10%. The accep-
tance  criteria were met.

Linearity

The models used for analysis of linearity were shown in (2) 
and (4) before. Table 11 presents the summary statistics for 
the assay-specific regressions. Figures 3 to 6 show the assay 
scatter plots with regression lines. Table 12 shows the regres-
sion results for the lack-of-fit analysis; as each of the assays 
displayed a significant lack-of-fit, the maximum percent 
deviation is calculated as the maximum of: [(Observed 
Mass − Pre dicted mass)/Predicted mass] × 100%. In addition, 
the number of percent deviations over 10% is calculated for 
each expected mass. The acceptance criteria for linearity 
were that each and every coefficient of determination (r2) 
must be at least 0.975. (For this analysis, the simple r2 was 
calculated.) The acceptance criteria were met.

Across-Assay Linearity

An alternative approach to linearity analysis is to analyze the 
linearity of all the data. The SAS code for the overall analysis 
is the same as shown before except that the line “By Assay”; is 
deleted from the code. Table 13 shows the summary statistics 
for the least squares regression, Figure 7 shows a scatter plot 

(Text continues on page 44.)
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Table 11 Linearity Summary Statistics for the Example 
Validation Data

Assay
Correlation 
coefficient

Coefficient 
of determi-

nation Intercept Slope
Root mean 

square error

Residual 
sum of 
squares

A 0.9989 0.9978 2.88 0.93 2.11 97.52
B 0.9956 0.9912 0.62 0.93 4.22 392.15
C 0.9946 0.9893 2.26 0.93 4.67 480.07
D 0.9960 0.9919 2.93 0.93 4.04 358.50
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Figure 3 Scatter plot of Assay A data with least-squares line.
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Figure 4 Scatter plot of Assay B data with least-squares line.
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Figure 6 Scatter plot of Assay D data with least-squares line.

Table 12 Summary of Lack-of-Fit Analysis for Linearity of 
Example Validation Data

Assay
Lack-of-fit 

P-value
Maximum deviation 

(%)

Level of 
maximum 

deviation (μg)

A <0.0001 3.813 70
B <0.0001 6.611 180
C <0.0001 9.880 40
D <0.0001 7.381 180

Figure 5 Scatter plot of Assay C data with least-squares line.
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Table 13 Linearity Results for the Example Validation Data

Correlation 
coefficient

Coefficient of 
determi-
nation Intercept Slope

Root mean 
square error

Residual 
sum of 
squares

0.9960 0.9920 2.17 0.93 3.89 1420.63

All assays are used in the linear regression analysis; see Figure 7.
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Figure 7 Scatter plot with all the data with least squares line.

of the data with the fitted regression line and Table 14 sum-
marizes the lack-of-fit analysis. Here, the simple r2 (coefficient 
of determination) is calculated.

For single replicate observations, the highest absolute 
departure from the line occurs at 180 μg in assay D (13.31 μg 
difference from the line on the y-axis); the highest percentage 
difference occurs at 40 μg in assay C (10.31% difference). 
Using the average over all 12 observations at each mass, the 
largest absolute deviation (average of |observed – predicted|) 
is 6.18 μg at an expected mass of 180 μg; the largest percent 
deviation (of average deviation) is 4.79% at 40 μg.

The validation of SOP 123 was successful; all acceptance 
criteria were met. Although there is some evidence of lack-of-
fit to the linear model, the deviation from the predicted values 
is not large for the method’s stated range of 50 to 150 μg. Thus, 
the final report for the validation of SOP 123 for use in 
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 measuring mass of Product W can state that the method is 
valid for its intended use.

CONCLUSIONS

The quantitative method validation characteristics of accuracy, 
precision, and linearity were discussed in depth in this chapter. 
An example validation protocol is shown with a fractional facto-
rial design matrix for the validation experiments. With careful 
planning, these three validation characteristics can be assessed 
from the same set of validation experiments. Thus, implemen-
tation of design of experiments can mean efficient use of 
resources. The analysis report was based on hypothetical data. 
Additionally, the author is neither recommending nor provid-
ing guidelines for what is deemed “acceptable” for the perfor-
mance characteristics being assessed. The validation acceptance 
criteria should be based on sound scientific and business 
 decisions as to what is required of the assay being validated.

One of the most important considerations in designing the 
experiments is balance over the factors of the SOP being vali-
dated. In the example, the validation assays were balanced over 
the factors operator, day, and expected mass. Lack of balance in 
a design can create erroneous statistical results and lead to 
inaccurate assessments of these validation characteristics.
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INTRODUCTION

A chemical reaction process, the large-scale conversion of raw 
materials to an intermediate or product, is considered vali-
dated if it can be shown to consistently produce material of 
defined quality following a set of manufacturing instructions. 
Attaining this knowledge and performance is highly depend-
ent on acqui ring a quantitative understanding of all critical 
factors that influence the process. The Food and Drug 
Administration (FDA) is developing ways to positively rein-
force this concept. In the future, companies will benefit from a 
lower regulatory burden for process validation and improve-
ment if their commercial manufacturing process can be shown 
to be well understood. In particular, a change control procedure  
would be sufficient to manage process improvements without 
submission of additional data to the FDA (1).

Chemical process development is about achieving this 
level of understanding under aggressive timelines and 
 business constraints. Process developers typically do not have 
the luxury of knowing when process development must be 
 completed and to what site it will be transferred. It is not 
uncommon for early toxicological and clinical results to lead to 
the decision to suspend development, only to be restarted 
months later when more promising results are acquired. When 
development work is suspended, the commercialization 
 milestone is usually not delayed, which places tremendous 
pressure on the development organization.

Delivering the process under these constraints requires a 
balance between speed, information, and cost. Solutions lay on 

49
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a continuum from performing  process development the usual 
resource-intensive way, to creating new ways to acquire proc-
ess knowledge that use a smaller number of resources. For 
timing and budget reasons, simply increasing the number of 
process developers is not always an option. Implementing 
highly parallel experimentation with robotic workstations may 
help, but can be impractical because of the need for  equipment, 
specialized skills, and time to make this approach practical. 
And while one could meet the process development timelines by 
cutting corners, the company as a whole loses because of the 
less than optimal manufacturing process and, likely, higher 
cost of goods. The issue that the process developer faces, and 
this chapter addresses, is how to increase the amount of proc-
ess understanding per experi ment while minimizing the impact 
on the project timeline.

Achieving understanding requires the establishment of 
mathematical linkages between a complex set of inputs and 
process conditions (factors) with outputs (yield, impurity levels, 
etc.). Through a series of experiments where the inputs are 
varied systematically, relationships or models are established 
between the inputs and outputs. These relationships can range 
from purely empirical at one extreme to a fundamental or 
mechanistic understanding at the other. In the empirical 
approach the information gained tells us how the process works, 
but not why it works (e.g., yield goes up as factor x increases). 
Understanding why a process works and why it fails requires 
additional information. The investment, however, is returned 
in a more efficient learning process. Fundamentally, we pro-
pose increasing information through the integration of multi-
factor experimental designs with  techniques for characterizing 
reaction kinetics. While the  concept is described for the devel-
opment of a chemical reaction  process, it can be applied to the 
 development of downstream unit operations as well.

MULTIFACTOR EXPERIMENTAL DESIGN IN 
PROCESS DEVELOPMENT

Development of a chemical manufacturing process progresses 
through stages of increasing understanding of the underlying 
chemical and physical phenomena. These stages can be 
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grouped into three broad categories: early development, 
 characterization, and optimization. The characterization 
stage can be further subdivided into factor screening and 
range finding. These stages roughly follow the natural stages 
of learning: what factors are important, how do the factors 
relate to each other, and what is the optimum combination. 
At each stage, the experimental approach changes to reflect 
the type and depth of information being gathered.

Early process development starts with feasibility 
 exploration. The purpose of this early stage is to confirm, at 
least at some high level, the reaction kinetics—what kinds of 
yield, purity, and reaction rates are possible. The predomi-
nant experimental design is the one factor at a time (OFAT) 
approach. When the synthesis scheme and reagents (i.e., 
recipe) become more clearly defined, development activities 
switch to a characterization phase. Here, multifactor experi-
mental designs become the approach of choice to provide  a 
quantitative link between process performance and process 
parameter levels. When this more complete level of process 
knowledge is achieved, experimental design becomes directed 
toward optimization, defining operational limits and raw 
material specifications. Table 1 outlines each of the key stages, 
their chief goal, and the predominant design approaches. In 
actual practice, these stages do not occur in a strictly linear 
fashion: they overlap. At times acquired knowledge will lead 
to process modifications and repetition of early stages.

Table 1 Outline of Process Development

Process stage Goal Design 

Early dev. Confirm synthesis route One factor at a time
Characterization

Screening Rank order driving factors
Determine rough reaction 

kinetics and by-products

Fractionated design 
Plackett-Burman 
Resolution III

 Range finding Refine process definition
Explore operating limits

Factorial designs
Resolution IV or 
 better

Optimization Optimize conditions for yield, 
time, impurity levels

Establish operating limits

Response surface 
Central composite 
Box Behnken
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This experimental design approach can be thought of as 
a lens that increasingly focuses the experimental effort in 
the optimal operating region. The process starts with lim-
ited, often qualitative knowledge about the reaction. The 
experimental designs sample the reaction space in a broad 
encompassing pattern looking for big effects. As the develop-
ment process proceeds, the number of critical factors and 
their operating ranges become more clearly defined. The 
designs center around the reducing factor space with the 
spatial  coverage becoming both more focused and more 
detailed. As the focus continues to narrow, the effort shifts to 
optimization, the spatial coverage fills in, and the models in 
turn become more complex.

Design and Feasibility—Early Process Development

Development usually starts with the discovery synthesis, a 
process designed to produce only small quantities, and often 
involving chemicals and procedures not amenable to a 
 manufacturing process. Early development converts the dis-
covery route to a synthetic route that does not have chemi-
cal, safety, environmental, or operational issues that would 
prevent it from being commercially viable. This must be done 
before the drug substance solid form and impurity profile 
become set by formulation development and toxi cological 
studies.

At this early development stage, there is often very little 
time available to study why the chemical reaction process 
works or what makes it fail. The process developer confirms 
the operability and adjusts the laboratory process as necessary.  
For example, are the reaction times and volumes necessary, 
are there better solvents, are reagent ratios appropriate, what 
are the gas and heat evolution rates, is mixing or solubility 
going to be a problem, can reasonable yield and impurity levels 
be achieved? At this stage, information about scalability may 
rest solely on reproducibility at a certain laboratory scale. 
Fortunately, scale up in the pilot plant under careful control 
and under the watchful eyes of the process developer usually 
results in successful production of larger quantities of material  
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sufficient for  clinical and toxicological studies, and dosage 
form development.

Experimental design during this phase of development is 
heavily weighted toward OFAT experiments. In OFAT experi-
ments, only one factor is varied while all the other possible 
factors are held at some fixed condition. Pass–fail experiments 
dominate. Because these experiments are seldom replicated, 
only large responses to process factor changes are likely to be 
observed and causes for variation incompletely understood. 
There are, however, several key pieces of information that 
should be established at this stage before proceeding to 
 characterization. Of primary importance is the establishment 
of the final synthetic route; key steps must be laid out and 
nominal working conditions established. There will be much 
detail to fill in, but the primary steps should be fixed.

Characterization and Optimization—Commercial 
Process Development

Characterization starts once the synthetic route has been 
selected, although there will be opportunities to modify the 
route if the changes do not impact the final solid state or impu-
rity profile of the final active pharmaceutical ingredient. The 
primary objective is to understand, through experimentation, 
the chemical and physical chemical processes involved in the 
transformation of raw materials to intermediates and prod-
ucts. The primary outcome is a process definition that includes 
the order of manufacturing steps, process parameter control 
methodology, process parameter limits, raw material specifi-
cation, and diagnostic metrics.

It is at this stage of the development process that the use 
of design of experiments (DOE) brings much to the table. First, 
DOE is a very efficient means of covering the factor space—it 
maximizes the information from each set of experiments. By 
getting the most from each experiment the DOE approach 
allows the process developer to quickly focus on the critical 
process factors. In addition, by covering the factor space in a 
systematic way, DOE facilitates model building. Good designs 
ensure that each factor has sufficient levels to estimate model 
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Table 2 Overview of the Design Process

1. Establish the objectives
2.  Define any limitations

 Budget
 Lead times
 Physical resources

3. Identify the response variables and their relationship to each other
4. Brainstorm the possible factors and prioritize
5. Establish ranges for the factors likely to be in the design
6.  Identify factors that will/will not be controlled. List settings of the 

 controlled factors. For noncontrol factors can one block or 
 randomize to lessen the effects?

7. Propose/select design 
 What is the stage of development? What interactions are anticipated?
 Which design points are required to estimate responses (e.g., reaction 
  rates)?

8. Establish roles/responsibilities and timelines
9. Execute

parameters and to test the appropriateness of the hypothe-
sized models. DOE also brings a common structure to the 
experimental effort as it moves through each development 
stage. Comparisons can be made back to earlier experiments 
because history is maintained.

GETTING TO A DESIGN

We will outline the key design and analysis features for each 
process development stage. Many of the detailed decisions 
inherent to creating a design will not be discussed here. Box, 
Hunter, Hunter (2) is a particularly good source for this infor-
mation. All of the designs used here can be found in their text 
book. However, some general principles that apply to all stages 
are discussed first.

Design Process

Any experimental design requires planning to be successful. 
Much has been written about this issue; see for example, 
Coleman and Montgomery (3). Table 2 captures the key fea-
tures. The details of this planning are, for the most part, 
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beyond the scope of this  chapter, but two key steps, factor 
selection and response  selection, require discussion here.

The most important step in the design process is step 4, 
the choice of factors. Their choice is more critical to success 
than the actual experimental design. A key input to their 
choice is the use of knowledge about the problem from a first 
principle’s perspective. We start from the premise that 
 chemical reactions follow certain fundamental laws associ-
ated with reaction kinetics. This suggests, for example, that it 
is not reactant concentration that is important but rather the 
ratio of reactants to the starting materials. It also suggests 
that time is always a critical factor, as is temperature. The list 
of first principle factors can be overwhelming. A critical part 
of the design process will be to prioritize the factors in order to 
keep the effort focused and the designs manageable.

Another important step in the design process is the choice 
of response(s) (step 3). Here again we look toward first princi-
ples for guidance. The primary responses will be the concentra-
tion/time curves associated with the products’ and by-products’ 
formation as well as the starting material loss. From these 
curves, we will determine the yield and purity levels that can 
be achieved and, more importantly, the reaction rates. The time 
curves are the starting point for understanding the underlying 
reaction kinetics. By analyzing how the concentration of start-
ing materials, products, and intermediates change over time, 
we will understand the reaction mechanism(s). Notice here a 
key feature of the design planning—there are multiple responses 
to be selected, not just sampling times, but different time pro-
files that measure different features of the reaction.

Fundamentally, the goal is to maximize the chemical 
yield while minimizing the formation of by-products. For-
tunately, factor combinations that give higher yield also tend 
to give lower levels of the unwanted materials. However, there 
are trade-offs to be made among the by-products, with some 
 needing to be more strictly controlled than others. The 
optimum  factor levels as a result are compromises between 
competing needs. These competing needs mean that, often, 
more factors than just those effecting yield need to be carried 
forward.
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Increasing the Information Content

As we have noted, combining a list of factors into a design first 
requires consideration of the development/validation stage. As 
the goals of each stage change, the design choice changes to 
accommodate the goals. We will illustrate this in some detail 
but a common feature, regardless of the development stage, is 
the heavy reliance on factorial designs. In these designs, each 
factor is tested at two or more equally spaced levels. The exper-
imental design considers the factor levels at all possible combi-
nations. As the number of factors and their levels increases, 
the number of possible combinations can get overwhelming. 
But through the use of clever fractionation—that is, leaving 
out some factor combinations—one can make the experimental 
effort manageable and still insure that key effects can be 
estimated.

However, process chemistry has several features that 
distinguish it from other DOE applications. As noted, time is 
always a critical factor. Time can also be a response, as in 
time to reaction completion, but its primary role is as a factor 
with carefully chosen levels. Generally, time is considered a 
nested factor; the levels selected depend on the level of other 
factors in the experimental run. Reactions proceed at very 
 different rates depending on the levels of the other factors, 
especially temperature, thus the time points providing the 
most information will differ from experiment to experiment. 
One can think of time as a factor that is subsampled from 
within the other factor combinations in the design. In fact, the 
design is usually built in a sequential fashion. First, the 
 nontime factors (whole plot factors) are combined into a design, 
then the levels of time are determined separately for each 
experimental run (whole plot combination). In order to 
 facilitate comparisons, one may choose to select some time 
points that are common across the experiments, but the key 
criteria is to choose time points that build toward quality 
 estimates of the main responses—the reaction rates.

Once a design has been established, one has to consider in 
what order to  perform the experimental runs. The natural ten-
dency is to reduce costs by running experiments in groups that 
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are somewhat alike in the factor settings. For example, if an 
experiment included temperature, it would be natural to want 
to run all of the high-temperature experiments at one time. 
Avoid this kind of short cut. A fundamental tenet of experi-
mental design is that the experimental runs are  performed in 
a random order. This will ensure that the factor effects are not 
biased by time or environmental trends. More importantly, 
randomization ensures that replicate experiments represent 
the true variation in the system. Use of a formal randomiza-
tion plan that makes use of a random number generator is 
encouraged.

The time factor, however, is typically not randomized. 
Once a reaction is set up and going, it is repeatedly sampled 
in time—one does not typically start over with a new reaction 
for each new time point. Time then is referred to as a repeated 
factor. (With the increasing availability of on-line monitoring 
technology, continuous sampling has become quite practical, 
but there still are reactions that cannot be repeatedly sampled.  
Though even in these cases one often relies on surrogate 
 measures that can be repeatedly sampled, e.g., hydrogen 
uptake.) This restriction on the randomization leads to a 
 subclass of designs referred to as split-plot designs. In split-
plot designs, the whole plot factor levels are randomly selected 
and then the whole plot is sampled or split and additional 
split-plot treatment factors applied. The terminology arises 
from the original development of these designs in agricultural 
experiments. The whole plot here refers to each combination 
of nontime factors that make up each experimental run. The 
split-plot factor, time, is applied to each whole plot.

Because of the lack of randomization in time, the variation  
in the data observed from time point to time point within a 
reaction (whole plot) is likely to be less than that observed 
from reaction to reaction. In effect, two process variance terms 
have been introduced, one reflecting the within-reaction vari-
ation, and a second reflecting the variation from reaction to 
reaction. This has consequences for how to determine which 
factor is having effects beyond the inherent process variation. 
Fundamentally, any factor effect measures need to be com-
pared against the correct comprehensive variance estimate.
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Another key feature of the application of DOE to process 
chemistry is that many of the critical factors, especially time 
and temperature, are nonlinear in nature. They enter the 
model in a nonlinear way (Appendix 1). This has important 
consequences for the spacing of factor levels (step 5). A flexible 
approach is needed: one that allows for factor levels that will 
provide good information on reaction rates and provide for a 
broad sampling of the response region. In some situations, it 
may be possible to describe an optimum factor spacing, but 
this optimum will depend on knowledge of the parameters 
themselves—information we seldom have. Rather than focus 
on the optimum, a few useful principles can be applied to 
choose reasonable levels. First, when selecting levels for the 
split-plot factor time, do not be stingy. Multiple sample times 
are generally cheap compared with the cost of the experi ment. 
More is better as long as one does not sample so  frequently as 
to change the nature of the reaction. When spacing the sam-
ples, try to get coverage in the following three key regions: (i) 
the initial reaction phase, (ii) the reaction  completion phase, 
and (iii) the postreaction or hold time phase. Coverage in these 
regions will allow for sound estimates of the rates of the reac-
tion for both the product and by-products. For the whole plot 
factors, do not be timid in the choice of factor ranges—espe-
cially early in the experimental plan. Strive for poor results as 
well as good. Do not try to focus on an optimum region too 
quickly. Instead strive to understand what can go wrong as 
well as right.

Analysis Methods

The analysis methods proposed here take advantage of kinetic 
modeling approaches as well as more traditional linear models, 
such as analysis of variance (ANOVA). At the screening stage, 
because so few time samples are taken, one typically condenses 
the concentration/time curves from each run into summary 
(whole plot) measures, such as yield and by-product formation. 
Simple analysis approaches, such as normal probability plots 
or ANOVA, can then be applied. Visual inspection of the concen-
tration–time curves is still recommended to identify clues to 
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the reaction mechanism. If sufficient sampling times are avail-
able, attempts to fit a rate law to the data may be profitable.

As the DOE stages progress, the time dimension is folded 
into the models. Initially, this can be done through the use of 
linear (mixed) models, including response surface models. But 
early on we push for kinetic models as a hypothesis for the 
reaction. These models are often simplified to allow for rate 
estimation under sparse design scenarios and are usually fit 
to each measured species in each experiment (reaction) 
 separately. One obtains reaction rates for each species and 
then applies usual ANOVA techniques to the estimated rates. 
The focus is on how these rates change as the key factors 
change. Are the rates temperature dependent, are they 
dependent on the purity of the starting material, are they 
reproducible? Reproducibility is a key goal—we want to get 
an early estimate of the experimental variation, particularly 
the between-experiment (whole plot) variance. Later, as the 
knowledge expands, kinetic models are fit to all reactions 
simultaneously. The proposed models are examined for how 
well they fit the data. The  kinetics are either  confirmed or 
new models hypothesized.

Box and Youle (4) pointed out the mathematical links 
between the more common empirical linear models used in 
many DOE applications and the fundamental reaction kinetic 
models proposed here. However, the kinetic model approach 
has several advantages. First, it communicates the results in 
a more chemically intuitive and informative way to process 
chemists and engineers. Second, it improves the  quality of the 
model fit—it better deals with the underlying nonlinearities—
and, more importantly, better predicts outside of the observed 
range (projections of yields greater than 100% are not very 
useful). Another very important advantage is that the pro-
posed rate expression, if correct, can predict what the experi-
mental results should look like—a type of reference point that 
prevents one from just accepting the results from an experi-
ment. If the proposed rate expressions and new data do not 
agree, it is a clear indication that something is amiss—it is a 
very effective way to become a skeptic about the exact amount 
of understanding one has. A mechanistic model forces the 
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Table 3 Screening Stage Summary

Stage Screening

Trigger Synthesis identified, need to identify important factors
Goal Rank process factors (main effects)
Issues Optimizing before factors established/failure modes 

identified. Factor ranges potentially too small, the effect 
too small. Still tinkering with process

Approach Follow effects hierarchy. Study one unit operation to 
minimize experimental error. Do not isolate 
product—measure species in process stream

Design Highly fractionated. Pilot a block to ensure good factor 
range selection 

experimenter to really challenge their logic and test their level 
of understanding. You cannot do that with standard  linear 
models alone. That is not to say that linear models do not have 
their place—they do. We will illustrate the use of ANOVAs, 
for example, in our application, but our goal is to establish 
mechanistic-based models.

STAGES OF PROCESS DEVELOPMENT

We have been discussing aspects of individual designs but, as 
noted, process chemistry development is a series of experi-
mental designs. One should budget and plan from the begin-
ning with this in mind. We will now move to describe each of 
the key stages in more detail.

Factor Screening

The basic approach in factor screening (Table 3) is to stress or 
perturb the process over a broad range of the factor space to 
understand how it responds with respect to yield and impurity  
levels. Conditions that generate poor yields and high impurity 
levels are actually sought in this stage.

Developing a list of factors to screen can be a daunting 
task, given the potentially large number of factors and the 
challenge to test the minimum number without missing an 
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important factor. But the selection process need not be 
approached with trepidation if the factor identification is 
made within a physicochemical framework. By basing factor 
selection on principles of mechanistic organic chemistry, 
 physical organic chemistry, and physical chemistry, a priori-
tized list of the most influential factors can be developed. 
Given the need for in depth knowledge in multiple disciplines, 
the use of subject matter experts to assist in factor selection is 
recommended.

Obtaining reliable data will be highly dependent on factor 
range selection, that is, defining where in factor space the 
experiment will be conducted. Unfortunately, ranges are often 
approached timidly. There is a fear of an experiment failing 
and wasting time. This often results in factor ranges being too 
narrow to provide a response larger than the experimental 
error. Be bold—there will be opportunities to narrow ranges 
later. Factor ranges should be broadened to the point that 
there is a reasonable degree of certainty that the experiment 
will still provide meaningful results. Also, understanding what 
physical laws may be controlling the process helps in range 
selection. For example, for chemical reactions, temperature 
influences the rate exponentially, whereas concentration typi-
cally influences the rate linearly.

The main goal at this stage is to rank order the factors so 
that future studies can focus on the key ones. The design tools 
of choice are the class of highly fractionated (usually  saturated) 
designs, especially resolution III designs. These designs are 
sometimes called main effects designs, because main effects 
are all they are really capable of estimating. Nevertheless, this 
class of designs excels at screening a lot of factors with mini-
mal investment in time and resources. A principle feature  of 
resolution III designs is that the number of experiments is only 
one more than the number of factors—you do not get cheaper 
than that. Table 4 illustrates a resolution III design in which 
seven factors are studied in eight experi mental runs.

To build a resolution III design, first write out the effect 
matrix associated with the full factorial design whose size 
(i.e., number of runs) is just greater than the number of 
 factors to be screened. Then assign each screening factor to a 
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column in the effects matrix, including the interaction terms. 
Consider the example in Table 4 where we have seven factors  
to screen. The full factorial design whose size just exceeds 
7 is 23. The signs for the interaction term effects normally 
associated with this design have been used to code for the 
additional factors 4, 5, 6, and 7.

If there are fewer factors than columns then some key 
interaction conditions can also be estimated. Simply do not 
assign any treatment to the interaction(s) of interest. For 
example, if in Table 4 there were only six factors in the design, 
then one of the columns could be used to focus on an interac-
tion term of particular interest. Suppose an interaction 
between factors 1 and 2 was suspected, then one could leave 
the column associated with factor 4 unassigned, as it is 
 confounded with the interaction between factors 1 and 2. 
Instead, factors 4 to 6 would be assigned to columns 5, 6, and 
7. One could use this same technique to get a crude estimate 
of the underlying experimental variation by associating the 
effects of unassigned columns with noise. Using unassigned 
columns to estimate either interactions or variation should be 
done with a great deal of caution, as there is much confounding  
in resolution III designs.

The number of runs (n) associated with resolution III 
designs come in 2k increments (4, 8, 16, and so on). Each can 

Table 4 Effect Matrix for 23 Design 

Factor levels Factor levels based on interaction effects

Run 1 2 3 1*2 (→4) 1*3 (→5) 2*3 (→6) 1*2*3 (→7)

1 − − − + + + −
2 + − − − − + +
3 − + − − + − +
4 + + − + − − −
5 − − + + − − +
6 + − + − + − −
7 − + + − − + −
8 + + + + + + +

Note: +, high level of the factor; –, low level of the factor.
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handle up to n−1 factors. The choices of designs can be 
expanded to handle intermediate numbers of runs through 
the use of Plackett-Burman designs. These saturated designs 
handle run sizes that are multiples of 4, namely n = 12, 16, 20, 
24, and so on. This allows for additional design choices. The 
n = 12 and n = 20 designs are particularly useful. Again unused 
conditions can be used to include key interaction terms or kept 
as dummy placeholders to be used to obtain an estimate  of 
variation.

In keeping with the efficiency of the screening design 
we tend to choose a relatively small number of (split-plot) 
sampling times for each (whole plot) design point (keeping in 
mind that sampling multiple times within a reaction is rela-
tively cheap). A rough rule of thumb is to include at least 
one sampling time point in each of the three key reaction 
regions described earlier. The first region corresponded to 
the initial rate of the reaction. If possible take a sample 
approximately where the reaction is half way to its antici-
pated maximum yield, although, depending on the speed of 
the reaction this can be difficult to do. The second key region 
corresponded to the reaction completion—the point of maxi-
mum yield. The third sample region was the postcompletion 
region. Here, try to sample well after the  reaction is com-
plete when the by-products begin to dominate. If additional 
time points are possible, the highest priority locations will 
include additional samples near the reaction completion 
point, followed by additional samples in the initial phase of 
the reaction.

The statistical analysis approaches associated with 
screening designs rely on a certain lack of statistical rigidity. 
Fundamentally, the goal of the analysis is to start to develop 
an understanding of the temporal changes for the raw materi-
als, reaction intermediates, and product. One is looking for 
which factors have the most impact on these time profiles. It 
can be difficult at this early stage to formally include time as a 
variable  in a statistical analysis. As we have noted, time is a 
nested factor, thus the sample times for each reaction are often 
unique. This makes it difficult, for example, to code for time in 
an ANOVA analysis. We recommend collapsing the time 
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dimension into what might be called a whole plot response and 
then performing a first pass analysis using the whole plot fac-
tors. There are a couple of ways to collapse. If some time points 
are common to each experiment, then one can analyze the 
whole plot effects separately at each time point—essentially 
slicing by time. This can be especially helpful when one is 
interested in the whole plot factor effects on the initial reaction 
rates. Another approach is to summarize or average the 
response(s) over the time dimension into one response. So, for 
example, one could analyze the maximum observed concentra-
tion across time (i.e., maximum yield). For by-products, one 
might perform an analysis using the last observed concentra-
tion from each reaction. Finally, one can also treat time as a 
response, as in time to maximum yield.

A key limitation in the analysis of screening designs is 
the lack of replication. Thus, an estimate for the underling 
variation is typically not available, and there are no clear 
factor candidates to combine into an error term. Nor is there 
likely to be historical information at this stage from which 
to approximate a variation estimate. This makes ANOVA 
 methods difficult to implement. But there are statistical 
methods that can help. One of these is normal probability 
plots. These plots graphically determine which factors are 
influential by rank ordering the factor effects (a useful 
 exercise in itself) and then plotting the effects on normal 
probability paper. Effects that are significant, not just process  
noise, will stand out as not following an overall linear trend. 
However, the label of “significant” should be used cautiously 
if at all. At best, the underlying variation is poorly estimated 
and the ability to distinguish factor effects from those effects 
driven by interactions will be poor.

Example

Appendix 1 lays out a simple hypothetical chemical reaction, 
which we will use to simulate a series of development experi-
ments and the approaches to their analysis and information 
accumulation. In the hypothetical example two reactants, A and 
B, combine to form product C. Two undesirable by-products, 
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D and E, are also formed. The goal is to maximize yield of C 
while minimizing the by-product levels. In this example, we will 
strive to find conditions that keep D and E under 1.0%.

Imagine that we are just starting the screening stage of 
process development. We have received the chemical process 
from discovery and completed our early process development 
work. OFAT experiments have established the fundamental 
chemistry to be sound and reasonably reproducible. We have 
established a short list of the solvents and reagents, crude 
ratios, volumes and times, and have identified key impurities. 
We are ready to develop the first screening DOE.

The team has brainstormed the factors and developed a 
prioritized list of the key ones. For each factor, ranges were 
established that were well outside of the anticipated operating  
range in order to maximize the effect size (but not so large as 
to change the fundamental reaction chemistry or overly stress 
the process facilities). Table 5 summarizes the final list of 
 factors and their ranges that are to be included in the first 
DOE. Time, of course, will also be a (nested) factor, but, as 
previously discussed, its levels will be determined after the 
whole plot design is established.

An eight run, resolution III design, was developed for 
the whole plot factors using the approach described earlier 
(Table 4). Sampling times were then brainstormed. For this 
first formal experiment, there was not a lot of information on 

Table 5 Key Factors and Ranges—
Screening Stage

Ranges

Factors Low (–) High (+)

X1: Ratio of A to B 1:1 1:2
X2: Temperature 25° 50°
X3: Addition rate, B 1000 u/hra 1 u/hr
X4: Ph 7.5 8.5
X5: Solvent type S1 S2
X6: Agitation level Low High
X7: Reactant, B, source B1 B2
a1000 units/hr represents a batch mode of operation.
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Table 6 Resolution III Design of Experiments—Factor Screening 
Experiment

Key  responses

Factors Cmax 
(%)

Rate 
(u/hrs)

D@8 hr 
(%)

E@8 hr 
(%)Run X1 X2 X3 X4 X5 X6 X7

1 – – – + + + – 87.1 0.11 3.6 0.4
2 + – – – – + + 96.7 0.24 4.1 5.4
3 – + – – + – + 88.9 0.22 24.6 0.2
4 + + – + – – – 92.8 0.46 26.0 35.5
5 – – + + – – + 86.0 0.11 3.8 0.5
6 + – + – + – – 102.0 0.25 4.6 6.8
7 – + + – – + – 95.1 0.48 24.5 0.4
8 + + + + + + + 101.4 2.03 25.8 38.9

the sensitivity of the reaction rates to temperature, so it was 
decided to use the same sampling times for all reactions. The 
times selected were half, one, two, three, and eight hours. The 
reaction was expected to finish in the two- to four-hour time 
window, so both times were included in the hope that at least 
one would be near the maximum yield associated with each 
experiment. Two sampling times were included early in the 
reaction (half and one hour) in order to get some information 
on the reaction rate(s). The eight-hour sample time was 
included to establish whether a hold period at reaction 
 completion was appropriate and to force degradent forma-
tion. Table 6 summarizes the whole plot design (factor levels 
are given in coded units), and several key whole plot sum-
mary responses. The design and results are given in stan-
dard order—the experiments were actually  performed in 
random order.

Figure 1 contains the actual observed time profiles from 
each of the eight runs. Much can be learned just by examin-
ing the graphs. Foremost is that the chemistry is reasonably 
well behaved. Yields are good, and except at high tempera-
ture (bottom half of the figure) the by-product levels appear 
to be close to our goal (<1.0%). Both the rapid addition (left 
side of the page) and the slower method of addition (right 
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side) provide  similar yields, although the method of addition 
is of course a slower reaction. Some striking features exist in 
runs three, seven, four, and eight that are worth further 
discussion.

Figure 1 Time profiles from resolution III design of experiments. 
Note: Vertical axis is concentration, horizontal axis is time; concen-
tration A = Δ; concentration B = �; concentration C = �; concentra-
tion D = ●; concentration E = �.
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By simple inspection of the plots for runs three and seven, 
the rising level of the by-product D appears to be accompanied 
by a decreasing level of the product. This correlation can be an 
important clue to the formation chemistry of D and is certainly 
an important observation concerning the stability of the 
 product C. Inspection of plots for runs four and eight reveals 
another correlation. Formation of the by-product E seems to 
increase with a corresponding loss of starting material B, pos-
sibly providing a useful clue to formation of E and the stability 
of B in the reaction mixture. Insights like this into the reac-
tion mechanism illustrate the importance of making multiple 
observations during each run.

We now bring more formal analysis approaches to bear 
on this data. Our primary goal is to rank order our factors. 
We actually have enough information to begin kinetic 
 modeling, but we will start with a more empirical approach to 
the analysis and develop the kinetic modeling approaches 
more fully in the next factor range finding experiments. Four 
primary responses (Table 6) were used to describe the time 
profiles from each run: (i) yield (Cmax), as measured by the 
maximum observed concentration of C expressed as percent of 
the starting concentration of A, (ii) the reaction rate for the 
formation of C (rate), measured in units per hour as the maxi-
mum observed concentration of C divided by its corresponding 
time, (iii) the level of by-product D at the eight-hour time point 
(D@8 hr), and (iv) the level of by-product  E at the eight-hour 
time point (E@8 hr), both expressed as a percent of the start-
ing concentration of A.

The analysis utilized the approach of normal probability 
plots, as no reliable historical estimate of variation was 
 available. For each primary response the observed factor 
effects were plotted on normal probability paper in rank order 
(Fig. 2). Here, “factor effects” are estimated as the difference 
of the average response at the high level (+) from the average 
response of the low level (−). On these plots, values that deviate  
markedly from the general trend line indicate significant 
effects. The largest factor effects (in absolute value) are 
labeled.

Note from the figure there are two clear dominant  factors, 
the ratio of A to B (factor X1) and temperature (factor X2), 
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each having different importance depending on the response. 
There are a few factors in the middle of somewhat unknown 
importance, and several having very little impact. Ph (factor 
X4), appears to be important to the formation of E, but note 
this factor is confounded with the interaction between factors 
X1 and X2—the interaction between the ratio of A to B and 
temperature. Temperature does not have much impact on 
yield (Cmax) although it does affect the reaction rate and has a 
substantial impact on by-product formation. The challenge of 
the next set of experiments will be to better quantify the effects 
of the important factors and unconfound them.

Range Finding

As we move out of screening into range finding, the goal shifts. 
The sparse designs used in factor screening helped us to 
 identify the key factors to carry forward. They allowed for a 
rough estimate of the range of reaction rates and a better 
understanding of the level of by-product formation. Based on 
the results, the factors can now be ranked by strength of 

Figure 2 List of effect estimates w/normal prob. plot.
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Table 7 Range-Finding Stage Summary 

Stage Range finding

Trigger Factors ranked. Is performance predictable/does it follow 
chemist model/are the assumptions correct?

Goal Identify two-factor interactions. Establish more accurate 
mathematical linkage between performance and factor 
settings. Set groundwork for limits and spec setting and 
optimization. Identify critical process factors

Issues Inferences/assumptions about untested factor settings. Is 
the laboratory scale a good surrogate for manufactur-
ing scale? Range selection: make it work vs. running 
into a failure vs. nonrobust response (missed 
information)

Approach Study one unit operation to minimize experimental error. 
Do not isolate product measure species in process stream

Design Fractional factorial with some replication

experimental response and the important ones selected for 
further exploration. In range finding the experimental effort 
shifts toward more focus on a smaller number of key factors, 
with emphasis on two-factor interactions and improving the 
accuracy and precision of the parameter estimates (Table 7). 
The goal in this work is to further test our understanding of 
how the chemical reaction process works, support operating 
limit selection for important operating factors, control limits, 
and registered operating limits for the critical process factors 
and specification for raw materials and product. This is where 
new conditions or combination of conditions will be tried to get 
at potential interactions. How thoroughly we study this stage 
determines how many future plant issues are avoided before 
manufacturing. Process knowledge gained here will set the 
stage for the optimization efforts to come.

The major design type used are two-level factorials, either 
in full form (2k) or fractional form (2k−p). These designs have 
several advantages over other approaches. First, like the 
screening designs, they are very efficient: the variances asso-
ciated with the parameter estimates are as small or nearly as 
small as those from any other design of the same size. They 
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also allow for simple straightforward calculations of the 
effects. The designs form a hypercube, a relatively simple 
shape that facilitates understanding and presentation of 
the results. The designs can also be easily expanded to include 
additional fractions or broader factor ranges.

Several practical considerations come into play at this 
stage of development. Foremost is the practical limit on how 
many experiments a lab can reasonably manage in one study. 
Given the complexity of the staging and the reaction times 
required for even simple process chemistry, our experience 
suggests that one is unlikely to be able to manage more than 
16 to 20 experiments at a time. Good design choices that 
match these kinds of numbers are the full 24 design, and the 
fractionated 25−1, and 26−2 designs. The 25−1 design is particularly  
well suited for range-finding needs. It has the nice property 
that main effects are confounded only with four-factor 
 interactions and two-factor interactions are confounded only 
with three-factor interactions. If we assume that higher order 
interactions are negligible we can estimate the five main 
effects and all 10 two-factor interactions with only 16 runs. 
Augmenting these designs with multiple repeats of a center 
point is highly encouraged. The center points provide valuable  
information about curvature in the responses as well as 
 provide the first reliable estimate of process variation.

Often, either because there are still a lot of factors to 
screen, or because the number of experiments is costly, or just 
because too much is still unknown, the work will proceed 
 cautiously, in stages, using blocks or “foldover” designs. These 
approaches first implement highly fractionated, typically 
 resolution III designs, and then, depending on the results, 
augment the initial designs with additional blocks of runs. So, 
for example, if the results are promising then the design can 
be augmented with additional runs to make it more complete. 
If the initial results are not good then the design can be shifted 
to a new region by changing the factor ranges or adding new 
untested factors to the design. In this way, energy is  minimized 
in poor regions of the factor space.

Factor range selection will start from what was learned 
in the screening stage, and typically narrow the ranges. Avoid 
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the temptation to narrow too much or try to focus too quickly 
on a perceived optimum area. Again, subject matter expertise 
is vital in making good choices. A critical consideration to 
range selection at this stage is some knowledge of the manu-
facturing operation range. As a rough rule of thumb, we strive 
to have the ranges be at least twice as broad as the antici-
pated operating range.

As with factor screening, the time dimension is applied 
after the whole plot design is established. The time dimension 
is more thoroughly sampled at this stage, often with two or 
more sampling times in each of the three key regions. Additional 
samples collected from the initial reaction phase allow for a 
better understanding of the reaction rates, in  particular 
whether there are any lags in the rates related, for example, 
to the need for adequate mixing. Samples taken near the 
anticipated reaction completion provide information on the 
“flatness” of the yield profile. This will be valuable information 
as we look toward defining the reaction hold time. Finally, we 
often extend the reactions far past their completion points in 
order to provide information on the rate of by-product formation  
and in particular to gain information on degradation product 
formation.

The analysis approaches for range finding are more 
 formalized than those used under screening. Here, we begin 
to develop reliable variance estimates allowing for more 
 reliance on statistical significance to assist in the identifica-
tion of key effects (although the power of the design must be 
considered). The use of the ANOVA technique is common, 
 particularly as a first pass analysis to determine which factors  
and interactions are most influential. We again have the 
 challenge of dealing with the time factor. As we did in factor 
screening, a good first pass technique is to collapse on the time 
dimension and then perform an ANOVA  analysis on these 
whole plot responses.

The use of models that incorporate the time dimension 
develop at this stage. Models can be empirical (e.g., polynomial-
response surface) or mechanistic in nature. We believe in get-
ting to a mechanistic-based model as early as possible. Mechanistic 
models best integrate time and best communicate-the chemical 



Validation of Chemical Reaction Processes 73

understanding. However, mechanistic models can get very 
 complex and difficult to fit. Simplified models that fit separately 
to each experimental reaction can help keep the analysis man-
ageable. The parameters often have high standard errors early 
in the game when the time profiles and conditions are limited. 
But even the use of less than perfect models early can help to 
build insight.

Example

Consider the results from our first screening experiment. We 
established, not surprisingly, that the ratio of A to B, the tem-
perature of the reaction, and of course time were all critical  
factors. The third factor, addition rate, did not appear to be 
that influential, although it may have some effect on yield. We 
were less certain about the fourth factor, Ph. It had a marginal 
effect on the formation of the E by-product, but this effect 
might be better explained as an interaction between the reac-
tant ratios and temperature. The team decided to carry all 
four of these  factors forward, and brought one new one to the 
table—the use of a catalyst. The factors and their ranges are 
given in Table 8.

The (whole plot) factor ranges were adjusted from those 
used in the first DOE. For the ratio of A:B and for tempera-
ture, the maximum level was lowered in order to make the 
range of prediction more in line with the capabilities of the 
manufacturing site. For example, the 50° maximum used in 
the first screening DOE, although very useful in that context, 
is now too far from or anticipated operation temperature 

Table 8 Key Factors and Ranges—Range-Finding Stage

Ranges

Factors Low (–) Mid (0) High (+)

X1: Ratio of A to B 1:1.0 1:1.3 1:1.6
X2: Temperature 25.0 32.0 40°C
X3: Addition rate, B 1000.0 2.0 1.0 u/hr
X4: Ph 7.5 8.5 9.5
X5: Catalyst 0.0 0.5 1
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of 25° (i.e., room temperature). The maximum temperature 
was reduced to 40°. The maximum concentration of B was 
reduced to a ratio of 1:1.6. These new ranges are still well out-
side of our anticipated operating range—but we want large, 
“modelable,” effects. The addition rate did not seem to have a 
large effect, but it was felt that we should continue to collect 
data from both operation modes (batch—1000 units/hr and 
method of addition—1 unit/hr). These ranges were not appre-
ciably changed. The mid-level of 2 unit/hr gives an addition 
time of approximately one half-hour. Because we were uncer-
tain about the pH effects, its range was widened. The mid-
value for each factor listed in Table 8 will be used to create a 
center point for the design.

The sampling times were extended to 12 hours, as some 
reactions in the initial experiment did not appear to be com-
plete. In addition, sample time points at 10 and 20 minutes 
were added to the high temperature reactions to allow for 
better estimation of the reaction rates. Note the nesting prin-
ciple applied here—higher temperature experiments require 
different sampling times.

A 25−1 design with two center points was planned and exe-
cuted. The design and summary results are given in Table 9.
The time profiles are too numerous to be given here; but, as 
with the first DOE we can condense the information into pri-
mary whole plot responses. These are essentially the same 
responses as used in the screening experiment with the addi-
tion of two new ones—the level of by-products, D and E, 
observed at the time (Tmax) of maximum yield. In other words, 
at or near the reaction completion point, what were the 
observed levels of the by-products?

A first pass analysis was conducted on the primary 
responses. Note that because we have replicated the center 
point we now have an estimate (although crude) of the under-
lying variation allowing for the use of the ANOVA approach 
to the analysis. An ANOVA model that included all main 
effects, two-factor interactions, and a curvature term was fit to 
each of the five key responses. The results are summarized in 
Table 10. Tabled is the estimated effect for each of the main 
effects along with a flag indicating the magnitude of the 
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Table 9 25−1 Design of Experiments—Range-Finding 
Experiment

Factors Key responses

Run X1 X2 X3 X4 X5
Cmax 
(%)

Rate 
(u/hr)

D-Tmax 
(%)

D-12 hr 
(%)

E-Tmax 
(%)

E-12 hr 
(%)

1 – – – – + 90.7 0.08 5.9 5.9 0.4 0.4
2 + – – – – 96.1 0.08 6.7 6.7 3.5 3.5
3 – + – – – 92.7 0.23 5.6 18.5 0.2 0.3
4 + + – – + 100.8 0.50 2.6 19.4 1.0 10.9
5 – – + – – 90.5 0.11 3.8 6.0 0.5 0.5
6 + – + – + 97.5 0.12 4.6 6.5 2.9 4.0
7 – + + – + 94.4 0.47 3.0 19.3 0.4 0.5
8 + + + + – 97.7 0.49 3.5 20.1 2.8 12.2
9 – – – + – 89.7 0.07 6.0 6.0 0.4 0.4
10 + – – + + 98.8 0.12 4.0 6.5 2.4 3.3
11 – + – + + 90.2 0.30 3.9 18.6 0.3 0.2
12 + + – + – 98.7 0.33 4.3 19.5 2.1 10.6
13 – – + + + 90.9 0.08 5.6 5.6 0.5 0.5
14 + – + + – 98.5 0.12 4.5 7.0 3.0 4.0
15 – + + + – 91.1 0.30 4.9 19.3 0.4 0.5
16 + + + + + 97.7 0.98 1.7 21.4 2.0 11.5
17 0 0 0 0 0 96.1 0.32 2.3 11.0 0.9 2.1
18 0 0 0 0 0 94.3 0.23 3.5 12.0 1.1 1.9

Table 10 Analysis of Variance Summary

Effect size 

Factor
Cmax 
(%)

Rate 
(u/hr)

D-Tmax 
(%)

D-12 hr 
(%)

E-Tmax 
(%)

E-12 hr 
(%)

X1 6.9a 0.14 –0.9 1.0 2.1b 7.1c

X2 1.3 0.35a –1.5 13.3b –0.6a 3.8c

X3 0.1 0.12 –0.9 0.5 0.3 0.5a

X4 –0.6 0.03 –0.1 0.2 –0.1 –0.1
X5 0.8 0.11 –1.0 0.0 –0.4 –0.1

aP < 0.1.
bP < 0.05.
cP < 0.01.
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P-value associated with a test for the significance of each 
factor. P-values less than 0.05 indicate a strong effect. Values 
less than 0.10 (or perhaps 0.15) indicate factors that we should 
 continue to track and use in our model building. Note that the 
table does not list the interaction effects. This is because for 
nearly all the responses none of the interactions were 
 significant (at α = 0.1). Only the amount of E at 12 hours had 
significant interactions, with X1*X2, X1*X3, and curvature all 
having significant effects.

The ANOVA clearly establishes that the predominant 
effects are driven by the first three factors (ratio A:B, temper-
ature, and addition rate) and the lack of effects associated 
with X4 or X5 (pH and catalyst). The A:B ratio (factor X1) 
effects yield as measured by Cmax with the yield increasing by 
about 7% as one moves from the low level of the A:B ratio (1:1) 
to the high level (1:2). Unfortunately, the amount of E formed 
at 12 hours also increases by about 7% as the level of the A:B 
ratio increases. Temperature (X2) effects the formation of both 
by-products and the rate of the reaction. The amount of D 
formed is particularly sensitive to temperature, increasing by 
an average of 13% as the temperature is raised from its low 
level of 25° to its high level of 40°. The addition rate (X3) effects 
the formation of E. Interestingly, the amount of D formed near 
the reaction completion point (D@Tmax) is unaffected by any of 
the factors. Unfortunately, its levels are all too high to meet 
our goal of by-products less than 1% (Table 9), suggesting that 
it may be necessary to compromise yield.

To better understand the magnitude and shape of the 
factor effects it is helpful to examine effects plots. These plots 
depict a response (y-axis) for factor(s) of interest (x-axis) 
 averaged over the remaining factors of the design. Figure 3 
 provides key effect plots for yield and the formation of D and E 
at the 12-hour hold point.

The effects plots clearly show the effects of the A:B ratio 
on yield, with higher levels of B leading to higher yields. But, 
as already noted, higher levels of B also lead to higher levels of 
the E by-product (lower left graph). Higher temperature leads 
to higher levels of by-products—both D and E (upper right 
and lower left graphs). However, the plots clearly illustrate 
the different nature of the effects. Recall that the E by-product 
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had a significant interaction (X1*X2) between the A:B ratio 
and temperature. Also, note the curvature indicated by the 
magnitude of the center point on the effects plot for the E 
by-product (lower graphs). This curvature may complicate our 
modeling efforts, particularly if empirical models are used. 
Additional design points may be necessary to build an appro-
priate model. But the curvature also represents an opportu-
nity, as it suggests that there may be an operating region 
where we can increase yield by increasing the A:B ratio 
 without adversely effecting the levels of the by-products.

But there is much more to be learned from this data. Now 
is the time to exploit the use of kinetic models. At this stage, 
there will be much about the kinetics that is not known, but 
there will be enough known that reasonable candidate models 
can be hypothesized. Here again the knowledge of the process 
chemist comes to the forefront in suggesting appropriate models 
to explore. From the initial studies, one can see that the rate of 
loss of A and B appeared to be equal and match the formation 
of C (see runs 1 and 5 in Fig. 1). C then appears to degrade as 

Figure 3 Effects of plots—range-finding experiment. Note: high 
temperature = ●; low temperature = �, mid temperature = Δ.
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Figure 4 Early kinetic models.
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the reaction proceeds, particularly at higher temperatures. 
This suggests that a simple second-order reaction of A and B 
combining to form C, along with some degradation pathway for 
C, would be a reasonable candidate model. The formation of D 
and E appear to follow different pathways. The E by-product 
appears linked to the amount of B present (see the ANOVA 
results in Table 10). The D by-product appears to be linked to 
C. As a first step, we fit the following three models (Fig. 4).

Because we have been thorough in our sampling across 
time, these simple models are easily fit. This was done sepa-
rately for each time profile from each experimental run. The 
quality of the fits was reasonable (fit diagnostics not shown), 
although some lack of fit was exhibited, particularly for C 
and E. Note that at this stage we choose not to include a 
degradation path for C in the model. The model will require 
further refining, but nevertheless the model explained much 
of the variation in the data. Table 11 contains the fitted 
rate constants.

We have taken fairly complex information and condensed 
it into essentially three measures—a reaction rate for the 
 formation of C, D, and E. Not surprisingly, one thing immedi-
ately pops out—the reaction rates are very dependent on tem-
perature (X2). We can further explore factor dependencies by 
applying the ANOVA technique to these rate constants. The 
ANOVA results (not shown) indicate that the reaction rates, 
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Table 11 Fitted Rate Constants

Factors Estimated rates

Run X1 X2 X3 X4 X5 kc kd ke

1 – – – – + 1.28 0.0066 0.0020
2 + – – – – 1.33 0.0067 0.0046
3 – + – – – 6.50 0.0191 0.0042
4 + + – – + 6.56 0.0188 0.0178
5 – – + – – 1.36 0.0062 0.0020
6 + – + – + 1.36 0.0058 0.0046
7 – + + – + 5.84 0.0189 0.0058
8 + + + – – 6.11 0.0186 0.0174
9 – – – + – 1.38 0.0069 0.0018
10 + – – + + 1.42 0.0064 0.0043
11 – + – + + 6.49 0.0191 0.0040
12 + + – + – 6.44 0.0193 0.0179
13 – – + + + 1.32 0.0059 0.0020
14 + – + + – 1.34 0.0065 0.0049
15 – + + + – 6.14 0.0190 0.0065
16 + + + + + 5.96 0.0206 0.0170
17 0 0 0 0 0 2.82 0.0106 0.0047
18 0 0 0 0 0 3.03 0.0116 0.0043

kc and kd, are likely only dependent on temperature. However, 
the rate of formation of E, ke, depends on factors X1, X2, and 
X3. This suggests that the models proposed for C and D are 
sound (except for the lack of fit observed for C noted earlier—
probably due to degradation), but that the model for E may 
require some additional complexity. Furthermore, the values 
observed at the center points (see runs 17 and 18)  suggest 
that the relationship of these rates to temperature is nonlin-
ear. A step toward expanding the model would be to include 
the use of the Arrehenius relationship.

Optimization

When the available information suggests that no further large 
changes are needed to meet development goals, the chemist 
will conduct a final round of experimentation involving the 
critical process factors to characterize the chemical process 
more accurately and to provide information for operating limits 
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Table 12 Optimization Stage Summary

Stage Optimization

Trigger Critical process factors and ranges identified
Goal Optimization, specification, and limit setting for plant 

validation
Issues Is the laboratory scale a good surrogate scale for manufac-

turing scale? Last minute process changes.
Approach Study one-unit operation to minimize experimental error. 

Do not isolate product-measure species in process 
stream

Design Response surface methodology

and specification setting (Table 12). The effort now focuses on 
the predictability of outcomes. The emphasis is on collecting 
information at multiple levels of each factor in order to build 
and test the predictive model(s). The multiple levels allow for 
evaluation of the quality of the fit—are the models sufficiently 
flexible, where is the region of greatest change (high deriva-
tive), are there regions of poor fit?

Replication of some or all design conditions is especially 
critical at this stage. Replication allows us to develop sound 
estimates of process variation. These variance estimates serve 
several functions. First, they form the basis for predicting how 
reproducible the process will be in the plant—they predict the 
lot-to-lot variation. Variance estimates can also tell us about 
unstable regions in the reaction space. Are there regions that 
the plant should avoid because the process cannot be well con-
trolled there? Finally, variance estimates will be vital to our 
establishment of process operating limits.

Typical design types used at this stage include central 
composite and Box Behnken designs. These types of designs 
utilize multiple levels of each factor, allowing the curvilinear 
or nonlinear nature of the chemistry to be explored and mod-
eled. Fortunately, at this stage of development the experimen-
tal effort usually does not require running a complete design 
from scratch. Rather, the design is achieved by augmenting 
the previous experimental efforts. For example, a prior facto-
rial design can be augmented with axial or star points to 
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 generate a central composite design. Generally, this augmen-
tation will include repeats of conditions that overlap existing 
design points such as the center point so that any block effects 
that occur from one set of DOE runs to the next can be exam-
ined. Block effects are a strong indication that something 
 critical is still unknown about the chemistry (or the analytical 
methods).

The analysis tools are predictive models. The goal is to be 
able to reliably predict outcomes within the studied factor 
space, describe the variation in these outcomes, and use the 
prediction and variance estimates to establish operating 
ranges. The process of building a useful predictive model is 
somewhat subjective but there are some useful principles.

● Err on the side of including more factors than less. Use 
generous inclusion criteria. For example, consider the 
use of alpha levels of from 0.1 to 0.2 for testing whether 
to keep parameters in the model.

● If an interaction is present include the corresponding 
main effects in the model.

● Use coded factor units if empirical linear models are to 
be used.

● Pay attention to model diagnostics such as residual 
plots.

Models can be of the linear or the kinetic type, but kinetic 
models should be the first choice. Kinetic models will be 
 comprehensive at this stage, requiring  simultaneous fitting of 
product and by-product reactions.

The development of a sound predictive model is, in the 
end, a kind of  validation of the process. It represents a high 
degree of knowledge. But the model serves another goal of 
validation—the establishment of control limits for all critical 
process factors. Figure 5 illustrates the key limits and their 
relationship to each other.

The process for establishing limits is beyond the scope of 
this chapter but some key concepts are needed. The limit 
 setting process starts with the product specifications, or what 
we have labeled as registration limits. These limits represent 
the commitment made to customers that define the product 
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quality. Typically, the most important limits would be those 
for the type and level of chemical impurities. Registration 
limits are not data driven, but rather needs driven. They rep-
resent the medical science and engineering requirements of 
the chemistry. So for example if the “customer” is the next 
step in the manufacturing process then an impurity specifica-
tion would depend on what the next downstream process can 
handle. If the customer is the consumer then the specification 
might be defind by the toxicity profile of the impurity.

Operating limits are data driven, with the most critical 
measure being the process variation. They are established by 
working inward from the registration limits to provide assur-
ance that we will not fail registration limits because of process 
or assay noise. At this stage of development the process varia-
tion will not be completely known, particularly in the hands of 
the plant, but the noise observed from the DOEs can be a rea-
sonable starting point.

Two other limits are given in the figure. The plant control 
limits are the usual 3σ control limits. They are a trouble detec-
tion mechanism designed to distinguish common cause varia-
tion from special cause. The failure limits represent the point 
at which product can no longer be successfully processed 
downstream. Note that knowing how close the operating limits 
are to the failure limits, defines whether the factor is a critical 
process factor. The relationship illustrated in Figure 5 is the 
ideal–we may not always be so fortunate. For example the 
plant control limits could lie outside of our operating limits. 
If this is the case then the process could not be said to be 

Operating  Limits

Plant Control

Registration Limits

Failure Limits

Limits

Figure 5 Operating limits.



Validation of Chemical Reaction Processes 83

 validated since there is too high a likelihood of failing the 
specifications.

The predictive models that we have taken pains to estab-
lish allow us to translate these product limits (in the response 
or “y” dimension) into factor ranges (the “x” dimension). The 
ranges need to account not only for the process variation but 
also the uncertainty in the models themselves. The factor 
ranges also must be within the manufacturing site’s ability to 
control otherwise additional noise will be introduced. For 
example, a successful manufacturing process cannot require 
temperature control within 2°C if the plant control capabili-
ties are 5°C. These ranges can be a challenge to deliver, but 
the ability to describe an operating range and accurately pre-
dict outcomes within that range represents a high degree of 
achievement. Ultimately it is validation.

Example

In the last round of experiments we established two key 
 factors: the ratio A:B, and temperature. A third factor of lesser 
importance is the rate of addition. Recall that the design used 
was a 25−1 with duplicated center points. Because only three 
 factors seemed to be contributing, the remaining factors were 
dropped and the results collapsed into a full factorial design. 
Figure 6 illustrates the collapsed design space for the observed 
Cmax response from Table 9. Notice that we end up with repli-
cate data for all the factor combinations. We have gained a 
great deal of information about process variation. In this 
example, the variance appears to be reasonably consistent 
across the design space. We can also begin to better visualize 
how the reaction responds in the factor space.

The team decided to augment the previous design with 
“star points” and additional center points to create a central 
composite design. This should improve our ability to test the 
quality of the fitted model, particularly the degree of curvature 
if polynomials are used. The center points were included to 
test for any block effects. Table 13 lists the augmented design 
points along with the resulting key responses (once again the 
time profiles are too detailed to be included here). The design 
levels are given in coded units. Notice that for two of the design 
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runs the factor levels have been modified from what would be 
typical levels (±1.7) for star points in a three-factor design. The 
first run increased the level for X1 (A:B ratio) from –1.7 to –1.3. 
This corresponds to a ratio of 1:0.9 rather than 1:0.8. It was felt 
that shorting the reaction too much would not provide useful 
data. Also for run 6 the level for X3 is +1.0 as this already 
represents the maximum possible  addition rate for B. These 

Table 13 Axial Points with Center Point

Run X1 X2 X3
Cmax 
(%)

D-12 hr  
(%)

E-12 hr
(%)

1 –1.3 0 0 82.3 9.7 0.3
2 +1.7 0 0 104.8 11.7 10.2
3 0 –1.7 0 93.0 4.1 1.3
4 0 +1.7 0 96.6 36.8 6.7
5 0 0 –1.7 94.6 11.2 1.9
6 0 0 +1.0 91.9 11.0 2.3
7 0 0 0 93.8 11.5 2.0
8 0 0 0 96.7 11.1 2.2

Figure 6 Results from range finding.
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kinds of compromises away from standard levels are often 
necessary in central composite designs.

The results indicate a well-behaved system. There were 
no failures. The center points compare well with what was 
obtained from the range-finding experiment and the other 
results compare well with expectations. The analysis combined  
these data points along with those from the range-finding 
design (the screening data could be included as well) into a 
single comprehensive data set. A predictive model was then 
fit. As noted, the model could be based on linear polynomials 
or kinetic models. We will illustrate the latter. 

Based on everything learned to date, a kinetic model was 
proposed (Fig. 7). Note the interconnectedness of the model—
different responses share common parameters. This will 
require the fitting of both parent and by-products simultane-
ously. In addition, it was proposed to include temperature in 
the model using the Arrhenius relationship. Thus, each rate 
constant was considered to be of the form:

k =  Fe – E A /T  (1)

where F is a frequency factor parameter, EA is a parameter 
that depends on the ratio of the activation energy to the molar 
gas constant, and T is temperature (°K).

Note that models are never completely comprehensive. 
Compare this model with the true model assumed in the 
appendix. Complete understanding is elusive, but that does 
not detract from the utility of less than perfect models.

The model was fit, and the quality of fit was determined 
to be good. The fitted model can be visualized as three response 

Figure 7 Final kinetic model.
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surfaces, one for C, D, and E, each in four factor dimensions—
the ratio A:B, the addition rate of B, temperature, and time. 
An immediate use of the model is to find combinations of factor 
levels that meet our goal of maximizing yield while maintaining-
the levels of D and E below 1%. A search of the fitted space 
reveals that the “best” operating range is at high temperature 
and a very rapid (batch mode) addition rate of B. Figure 8 
presents the fitted contours for yield and by-products for 
the batch addition mode (rate = 1000 units/hr) at a tempera-
ture of 50°.

From the contour plot one can see that to achieve levels 
of D below 1% requires keeping the reaction time under 
approximately 0.3 hours (20 minutes) when the reaction is 
run at 50°. Furthermore, if the reaction is run for at least 
0.2 hours, then yields in the neighborhood of 95% to 98% are 
possible as long as an excess amount of B is added (approxi-
mately 1.8 units or greater).

These results do not yet represent an operating range. 
We need to use what we know about the noise in the process 

Figure 8 Fitted contour plots for percent C, D (temp = 50° and 
batch addition mode).



Validation of Chemical Reaction Processes 87

to adjust our approximate optimal settings to account for ran-
domness in the next batch(es). As we have noted, the formal 
process of accounting for process variation is beyond the scope 
of this chapter, but we have all the information required to 
establish operating ranges that are supported by data.

SUMMARY

We have taken pains to lay out process validation as a 
 methodical, sequential process. We outlined a flexible 
sequence of experimental designs that will gather informa-
tion quickly and efficiently. The importance of upfront plan-
ning and working with subject matter experts for factor and 
range selection was stressed. We demonstrated the notion 
of expanding the number of sample points during each run of 
the experiment to achieve a deeper understanding of the 
chemical reaction. These extra data points permitted 
the construction of concentration–time plots which are the 
backbone of  understanding of chemical reactions. From these 
plots, reaction mechanisms can be postulated and rate laws 
can be developed to support model building. The ultimate 
outcome of a validated chemical reaction is achieved, critical 
process parameters are identified and characterized.
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Appendix 1

The example used to illustrate the design and analysis concept  
is based on a  simulated chemical reaction. The use of simulated  
rather than real data allows for better illustration of the entire 
design process. The reaction assumed was simple: a starting 
material, A, is combined with a reagent, B, to form product, C. 
By- products D and E are formed from both C and B, respec-
tively. The true mechanism was assumed to follow the kinetic 
model described by the following differential equations,

d[C]/dt = k1[A][B] – k2[C]
d[A]/dt = −k1[A][B]
d[B]/dt = −k1[A][B] – k3[B][B]
d[D]/dt = −k2[C ]
d[E]/dt = −k3[B][B]

We further assume that the rates of reaction can be described 
by the Arrhenius equation,

kL =  Fe – E A /T 

where T is temperature in Kelvin, and F and EA are parameters  
representing a frequency factor and the ratio of the activation 
energy to the molar gas constant, respectively.

To facilitate learning, we have chosen a very clean chemis-
try with only one reaction step. Other factors, particularly those 
that are more physical in nature were assumed to have no effect. 
So, for example, agitation levels, mixing times, starting 
material purity, pH, and so on would not affect the reaction. 
It is of course assumed that this information is unknown when 
starting the experimental effort. These factors would most 
certainly be included early in the design discussions.

For each design, data were generated using the theoretical  
kinetic model, the factor levels specified in the design, and a 
random noise component. Without loss of generality it was 
assumed that [A] = 1.
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INTRODUCTION

Validation and process analytical technology (PAT) require 
that we find and  control the primary sources of product and 
process variation. Not many people realize that the current 
good manufacturing practice contain the words validation and 
variability in the same sentence. “Such control procedures 
shall be established to monitor the output and to validate the 
performance of those manufacturing processes that may be 
responsible for causing variability in the characteristics of in-
process material and the drug product” (1).

To accomplish this, we must collect data. But how we 
 collect that data is as important as the data themselves. Some 
data are worthless, some are priceless. The conditions and 
procedures used to find data ultimately determine their value. 
Statistical quality control (SQC), statistical process control 
(SPC), total quality management (TQM), and six sigma are all 
passive approaches to data collection. These procedures only 
observe and report what is happening. They cannot find the 
analytical cause-and-effect relationships needed for true 
 process understanding and for controlling the sources of 
variability.

Controlled multivariate experiments are the most logical,  
the most scientific, and the most efficient way that scientists 
know to collect data. Controlled experiments are the scientific 

The basis of this chapter is from a paper by the same authors titled “Designed 
Experiments––A Vital Role in Validation,” published in Pharmaceutical 
Technology, June 1996.
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method in action and applied at the laboratory bench and on the 
production floor. As a result, experiments have an increasingly 
vital role to play in validation, PAT, and thus the quality of the 
products. In 1985, E. M. Fry, then director of Food and Drug 
Administration (FDA)’s Division of Drug Quality Compliance, 
announced that data were critically important in validation (2).

Validation has a quantitative aspect––it’s not just that you 
demonstrate that a process does what it purports to do; you 
actually have to measure how well it does that. Then, the 
 processes that cause that variability must be identified. 
Experiments are conducted (that is, validation runs) to ensure 
that factors that would cause variability, are under control.
 The regulations require validation of those processes 
responsible  for causing variabilities in the characteristics of in-
process materials or finished products. However, the regula-
tion implies that not everything that takes place in a 
pharmaceutical  manufacturing plant causes varia bility. 
Therefore, some things don’t have to be validated. We never 
intended to require that everything [that] takes place in a 
manufacturing operation is subject to a validation study.

Recall the FDA definition of validation: “Validation is 
establishing documented evidence which provides a high 
degree of assurance that a specific  process will consistently 
produce a product meeting its predetermined specifications 
and quality attributes” (3). Clearly, consistently means a lack 
of variability. But how should variability be reduced? In the 
“Guideline on General Principles of Process Validation,” FDA 
states, “Quality, safety, and effectiveness must be designed 
and built into the product; quality cannot be inspected or 
tested into the finished product” (3). Thus, minimizing varia-
tion must start in development.

K. G. Chapman observed that

Process development equals process validation plus process 
optimization. A well-developed process is, therefore, by defini-
tion a well-validated process. Once it is decided that a bulk 
pharmaceutical chemical (BPC) process should be validated, 
the question becomes “How?” In the case of a new process, the 
answer is simple: Do a good process development job and docu-
ment it (4).



The Role of Designed Experiments 93

He also presents a validation timeline that includes a product’s  
life cycle, including the design stage.

Note that nowhere in Fry’s discussion, FDA’s definition, 
or Chapman’s validation timeline are we told where or when 
the data needs to be collected for validation. Although the 
FDA definition specifies “predetermined,” obviously the data 
used to set the specification are not useless later.

Supporting this, H. L. Avallone notes that

Process validation for a bulk pharmaceutical chemical (BPC) 
may include development data that describe the limitations 
and efficiency of the process … Their laboratory notebooks and 
their processing records also may be reviewed because these 
records may constitute the raw data for process validation (5).

We must collect validation data throughout the product 
and process development life cycle. To demand that all 
 validation data be collected only after development is completed  
assumes that nothing of importance was learned during 
 development. On the contrary, in some fortunate projects, 
 validation is nearly completed when development is completed.  
Simplicity in validation can be realized.

Fry continues, “We are saying a process should not be 
operated under worst case conditions which have not been 
included in validation studies. To put it another way, don’t 
operate a process in uncharted waters” (2). Anyone who has 
gone boating will identify with this philosophy: If you don’t 
want your keel ripped off, you must know how the bottom of 
the ocean looks.

Effective March 12, 2004, FDA revised a long-standing policy 
document regarding the validation of pharmaceutical manufac-
turing processes for drugs that are subject to pre-market 
approval requirements. This policy guide is now titled Process 
Validation Requirements for Drug Products and Active 
Pharmaceutical Ingredients Subject to Pre-Market Approval … . 
New to this version is the recognition of the role of emerging 
advanced engineering principles and control technologies in 
ensuring batch  quality … . This version also deletes the 
previous reference to “three” validation (or conformance) batches 
at commercial scale as adequate proof of process validity––a 
number is no longer suggested.
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The proof of validation is obtained through rational experimen-
tal design and evaluation of data, preferably beginning from 
the process development phase and continuing through the 
commercial production phase. Prior to the manufacture of the 
conformance batches, the manufacturer should have identified 
and controlled all critical sources of variability (6).

In September 2004, the FDA issued the Guidance 
Industry, PAT––A Framework for Innovative Pharmaceutical 
Development, Manufacturing, and Quality Assurance (7).

This guidance is intended to describe a regulatory framework 
process analytical technology (PAT) that will encourage the 
voluntary development and implementation of innovative 
pharmaceutical development, manufacturing, and quality 
assurance … . Our new strategy is intended to alleviate concern 
among manufacturers that  innovation in manufacturing and 
quality assurance will result in regulatory impasse … . The 
goal of PAT is to enhance understanding and control the manu-
facturing process, which is consistent with our current drug 
quality system: quality cannot be tested into products; it should 
be built-in or should be by design … . This benefit can be 
achieved through the use of multivariate mathematical 
approaches, such as statistical design of experiments (DOE), 
response surface methodologies, … . Methodological experi-
ments based on statistical principles of orthogonality, refer-
ence distribution, and randomization,  provide effective means 
for identifying and studying the effect and interaction of prod-
uct and process variables … . Develop mathematical relation-
ships between product quality attributes and measurements of 
critical material and process attributes.

Thus, it is clear that the FDA has promoted a consistent 
message since 1978: find and control the sources of variation 
using good science and good statistical practice. To do that, we 
need to collect data.

DATA COLLECTION

How should the vast oceans of a manufacturing process be 
mapped? How should factors that cause variability be 
 separated from those that do not? How should data for valida-
tion be collected in the most scientific and cost-effective way?
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Scientists and engineers collect data either by observa-
tion or by experiment. In the observational approach, the 
investigator is only an observer of the product or the process. 
The investigator records observations in the manner of 
Charles Darwin sailing on the ship the Beagle or Jane Goodall 
in Africa. Both recorded their observational landmark stud-
ies; they made no attempt to control the environment or influ-
ence events.

However, cause-and-effect relationships in these situa-
tions are obscured by rampant variability and multiple myste-
rious causes. The approach is passive. Classical observational 
tools for industry usually include sampling plans, control 
charts, and process capability studies. In addition, Branning 
has found two of the most useful observational tools for vali-
dation and PAT are process flow charts and fishbone diagrams, 
which help define the process and identify the potential 
sources of variability. These observational tools need to be 
used on a routine basis to  collect background data for valida-
tion and PAT.

However, as noted, these tools are passive. There is no 
deliberate and  specific control of the environment or critical 
process parameters. These observational tools cannot find 
and describe cause-and-effect relationships directly. The only 
way to find these relationships is to conduct a multivariate 
controlled experiment.

In contrast to the observational approach, data collection 
in a controlled experiment is active; investigators take control of 
the environment and critical process parameters. By deliberate 
changes in key factors, the cause-and-effect relationships are 
forced to show themselves.

CONTROLLED EXPERIMENTS

There are three ways scientists and engineers conduct 
 controlled experiments: success/failure, one-factor-at-a-time, 
and multiple factors at a time. Humans have used the first 
two since before recorded history, and still use them intuitively  
in many facets of our lives. In 1843, John S. Mill described 
these two approaches in his book Systems of Logic. He called 
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the success/failure experiment the absolute experiment, and 
the one-factor-at-a-time experiment the method of differences. 
Both have become ingrained and implicit in western science. 
Unfortunately, one author has specifically called for the one-
factor-at-a-time approach for validation.

All process variables should be monitored, and never more 
than one varied at a time so that the effects can be fairly and 
accurately evaluated . . . . Then we can challenge the process by 
intentionally changing adjustments to affect only one process 
variable at a time to reach and then exceed the acceptance 
upper/lower limits of each specification (8).

Although this is appealing, it is grossly inefficient. There 
is a third and more effective scientific method for collecting 
data experimentally. Sir R. A. Fisher, a geneticist and mathe-
matician, originated the multiple-factors-at-a-time approach. 
He developed this advance at Rothamsted Agricultural 
Research Station when working in Harpenden, England, 
starting in 1919. He wrote the first journal article in 1926 (9), 
followed in 1935 by a textbook, The Design of Experiments, 
which is still in print (10). The first books showing the 
approach’s industrial applications were published in the early 
1950s (11–13).

The multiple-factor approach has been shown in practice 
to use resources more efficiently, and many scientific fields 
and industries use DOE extensively. But this approach is still 
unknown to some areas as the basic concepts are not routinely 
taught to undergraduate science and engineering students.

The use of DOE in the pharmaceutical industry began 
early. For example, S. M. Free, while head of statistics at 
Smith Kline & French in 1957, wrote an internal statistics 
booklet with F. A. Oyer (14). It showed how DOE could be 
used in formulation development and stability studies. Now 
called mat rixing, this approach is now referenced in 
International Conference Harmonisation (ICH) Guideline Q1 
(15). Many articles on DOE have appeared in the pharmaceu-
tical literature during the past 25 years (16–31). Currently, 
the routine use of DOE is sporadic. The key to its success is an 
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advocate in management who provides the needed motivation 
and incentives.

Using DOE for pharmaceutical validation has histori-
cally been less well known. Torbeck has been giving talks and 
papers since the late 1970s showing the application of designed 
experiments to validation and conducts training in the subject 
(32,33). Both authors have given numerous presentations 
about using DOE for process validation. To the authors’ knowl-
edge, the first published application of designed experiments 
for validation may be by A. Y. Chao et al. (34).

In the context of validation and PAT, designed experi-
ments are used throughout the development journey to find 
and quantify cause-and-effect relationships. The data col-
lected to develop the product and its specifications then also 
support validation. Concurrent development and validation 
data collection are realized. Thus, the factors causing varia-
bility are identified, quantified, and controlled. Every point 
on Chap man’s validation timeline benefits from DOE data 
collection, which is used most effectively in the design stage 
and in prospective performance qualification (4). The concept 
of a timeline is in the PAT guidance and in the GMP revision 
as a lifecycle.

Brainstorming sessions for process flow charts typically 
name 25 to 30 factors believed to have some effect on the 
outcome. However, the Pareto  concept of the vital few and 
trivial many, also called the 80/20 rule, indicates that usually  
not more than seven, and often five or less, factors are truly 
significant and vitally important. Chapman notes this as 
well: “A [validation certificate] is promulgated for each 
 operating parameter range designated as critical in the 
 control spreadsheet; most pharmaceutical processes require 
about five to 10 certificates” (35).

We typically use two levels––high and low––to conduct 
initial experiments. This correlates with Chapman’s proven 
 acceptable range (PAR) approach (35): “Each end of each PAR 
must be supported by documented evidence; otherwise, is not 
a proven range.” However, some authors believe that looking 
at five to 10 factors each at two levels requires them to study 
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all possible combinations of factors and levels. For example, 
statements in Berry (36) are extended by Sharp (37):

Let us assume a simple product with only three ingredients, 
each with five test parameters such as those suggested. That 
aspect of the “process challenge” will require the manufacture of 
(25)3 = 32,768 experimental batches. Logically, they would need 
to be combined with all possible combinations of the “process 
variable batches” already discussed, and we would then have a 
total of 35 × (25)3 = 7,962,624 experimental batches. They 
would, of course, have to be full-scale production batches (37).

This is manifestly misleading! Thousands of journal 
 articles and hundreds of books (11–13) on designed experi-
ments, many of them pharmaceutical (16–31,38,39), clearly 
show that three to 15 factors, in as few as 8, 12, or 16 sets of 
conditions, in small-scale development batches, can be effi-
ciently studied. These are not full-scale production batches. If 
done early in development, the DOE data used to develop the 
product can serve to set specifications and to  document vali-
dation. This is already being done in some companies for assay 
validation (40). “Experiments conducted during product and 
process development can serve as building blocks of knowl-
edge that grow to accommodate a higher degree of  complexity 
throughout the life of a product” (7). From a  managerial per-
spective, Branning has found the use of DOE results in pro-
ductivity improvements ranging from 25% to 200% and has 
reduced project time and costs by 25% to 50%.

Design of experiments not only finds factors in complex 
processes that have a significant impact in their own right, 
but it can also find the joint interaction effects between these 
factors. The observational, success/failure, or one-factor-at-a-
time approaches simply cannot find these interactions. When 
a process is described as more art than science, this usually 
suggests the joint interactions of factors that are not 
 understood. The fact that those interactions are important is 
reinforced by the PMA Validation Advisory Committee:

Consideration must also be given to the potential interactive 
influence of other parameters in the total system. Adverse effects 
of an extremely high or low pH, for example, might be aggra-
vated by extending time and/or elevated temperature (41).
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“Traditional one-factor-at-a-time experiments do not address 
interactions among product and process variables” (7).

Another major benefit that is often overlooked is the 
identification of factors that do not affect process or variability.  
These factors can then be set to their most economical level, or 
specifications may be relaxed. Data and statistical analysis 
collected during the experiment will support these actions.

CONCLUSION

Validation and PAT need effectiveness (validating the right 
things) and efficiency (validating the best way). Given the time, 
money, and staffing constraints imposed by the marketplace, 
more time must be spent on planning for better execution. This 
is best accomplished by using all available tools. Especially 
needed are basic observational tools and experimental meth-
ods, including the success/failure and one-factor-at-a-time 
approaches. But multifactor-at-a-time experiments, DOE, also 
have a vital and substantial role to play in developing process 
knowledge for validation.

They are the most cost-effective way to collect data to 
study cause-and-effect relationships. The use of DOE is needed 
to gain efficiency, study joint interaction effects, and identify 
 factors controlling variability. Today’s competitive business 
and regulatory environments demand that the best approaches 
be learned and used.
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INTRODUCTION

Biological assays using cultured cells are a crucial part of the 
quality-control  process for pharmaceutical protein products. 
These assays can have large variation and can require 
 substantial effort to develop, perform, analyze, and validate. 
The assignment of reference samples and dilutions to 
locations on 96-well cell-culture plates is only one aspect of 
experimental design for these assays. This chapter will sug-
gest how classical experimental design methods (factorial 
screening designs, response-surface designs, Latin Square, 
split-plot, strip-plot, and nested designs) can be effectively 
used in the development, routine performance, and validation 
of cell-culture bioassays.

Biological assays are systems that use comparisons 
among groups of living organisms to measure a response. These 
assays are typically used to measure proteins or other com-
plex molecules that have both very specific activity and very 
high potency. Because biological assays report results based 
on a comparison among groups of organisms, the concept of 
relative potency is fundamental in these assays. For each 
sample (where a reference or standard is also considered a 
sample), a concentration–response relationship is demonstra-
ted experimentally. Assuming that the groups of organisms 
are comparable and the concentration–response relationship 
is similar, the difference between the concentration–response 
relationships is interpreted as a relative potency. Note that 
much depends on the exact definition of similar. The typical 
assumptions of biological assay include:
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● samples contain the exact same active compound, dif-
fering only in the amount or concentration of analyte;

● the concentration–response relationship has constant 
variance around the fitted model (perhaps after a 
transformation of the response);

● the variation around the fitted model is normally 
distributed;

● observations are independent (1–3).

The constant variance assumption can be relaxed via 
either a rescaling of the response or a weighted fit (4). Simi-
larly, if an appropriate model is used, the normality assump-
tion may be relaxed (4). For example, with a dichotomous 
response, a logit-log model may be appropriate (5). Other 
response patterns (e.g., Poisson) may be fit via a generalized 
linear model (6). For quantitative responses, it is often most 
practical to find a rescaling or transformation of the response 
scale to achieve nearly constant variance and nearly normal 
responses. Finally, if samples are grouped, then blocks or 
other experiment design structures must be included in the 
model (7–12).

This chapter does not focus on the methods for assessing 
similarity or  parallelism; for background, see Plikaytis et al. 
(13). A newer and much better approach to assessing paral-
lelism uses confidence intervals (14,15). The focus here is on 
how to use experimental design to accelerate the assay-devel-
opment process; methods for addressing concerns about 
potential correlations among groups of observations; and how 
practical constraints influence assay design. A major goal is 
to show an effective way to perform and summarize valida-
tion experiments for biological assays (16) that allows flexible 
use of the assay for those who must set assay and product 
specifications.

Most assays can be thought of as having a concentration–
response curve that is approximately logistic in shape (1,13); 
that is, for low concentrations of analyte, the assay response 
is consistently low (or high). For some (typically quite narrow) 
range of concentrations of analyte, the response increases 
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(or decreases) rapidly with increasing concentration of ana-
lyte. For high concentrations of analyte, the response is 
 consistently high (or low) (Fig. 1). The low- and high-response 
regions are called the asymptotes of the response, whereas 
the steep portion of the response curve is called the respon-
sive region.

Figure 1 A typical logistic log concentration–response curve show-
ing the true (unknowable) curve as the line, round points, with 
random normal variation around the curve, and both positive and 
negative controls as square points (the controls are plotted using 
artificially imposed dose levels to make the plot easy to interpret). 
For this example, the lower asymptote is consistent with the low 
control and the upper asymptote is consistent with the high control; 
in many assay systems, one or both of these controls are not consist-
ent with the asymptotes. The dashed vertical line indicates the EC50 
or ED50, the log concentration that gives a response midway between 
the two asymptotes.
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PRELIMINARY DEVELOPMENT EXPERIMENTS

The goals during preliminary development include finding a 
set of assay conditions where the assay is responsive to the 
analyte(s) of interest and where the assay response is not 
sensitive to other factors that may be either controlled or 
uncontrolled (16–18). The desirable properties of an assay 
concentration–response curve include having good separation 
between the asymptotes and having small variation around 
the response curve. A very steep response curve is sometimes 
inconvenient; in particular, with a steep response curve and 
asymptotes that are not well  separated, it is difficult to get 
several responses on the steep part of the response curve, 
 especially if the EC50 of the curve (the dose of a sample that 
yields a response halfway between the asymptotes of the 
dose–response curve) varies appreciably from day to day, 
requiring the use of a wide range of concentrations to ensure 
capturing both asymptotes. Even so, it is easier to get good 
precision on the relative potency from a very steep curve than 
from a very shallow response curve. A particularly useful 
 summary of a response curve in early development is to divide 
the difference in the asymptotes by the estimated standard 
deviation around the curve; we seek  conditions that will 
 maximize the ratio,

t =   
upper asymptote – lower asymptote

    __________________________________  
 S pooled 

  

Note that this ratio is meaningless unless the variation around 
the curve is constant throughout the concentration and 
response range; hence an appropriate trans formation must be 
applied before this summary.

In initial range-finding experiments, it is often practical 
to do one-factor-at-a-time experiments (4), followed by 
factorial screening designs using many factors (4,7), each at 
two levels. As we are interested in the properties of the 
 concentration–response curve (particularly the difference 
between the asymptotes, the steepness of the responsive 
region, and the variation around the curve), it is important to 
quickly move to study the full curve. For cell-culture assays 
performed in 96-well plates, an effective approach is to assign 
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concentrations of the analyte to the columns. Alternatively, 
unique combinations of all other treatment factors are assigned 
to rows, plates, or runs. Runs are groups of plates set up at one 
time by one analyst using a common batch of cells. During 
development, it is important to identify large location effects 
and large sources of variation while using small numbers of 
replicates of many different operating conditions. It is often 
very useful to study the full concentration–response curve at 
each condition. A powerful and convenient technique is to 
assign individual rows of assay plates to unique combinations 
of conditions in factorial or response-surface designs for fac-
tors that may affect the assay while assigning concentrations 
 (dilutions) to columns. A few two-level factorial (or fractional 
factorial) designs for factors other than analyte concentration 
is a very effective way to find good initial operating conditions. 
Careful attention to experimental units is important here as 
some factors can be assigned to plate rows (e.g., buffer and cell 
concentration), whereas others must be assigned to entire 
plates (e.g., the length of the incubation time and the number 
of washes). Others are most appropriately assigned to groups 
of plates (e.g., properties of the preassay cell-culture condi-
tions and incubation temperature) (11,12,19,20).

After having identified good operating regions, it is useful 
to use a response-surface design (4,10) to find good conditions 
for combinations of factors that can be set quantitatively. For 
example, in an antiviral assay, it is likely that the starting cell 
density and the starting concentration of virus would need to 
be carefully optimized along with the preassay cell-culture 
conditions. At this stage (if not earlier), it is also appropriate 
to begin collecting additional information about sources 
of variation. Factors that may be of interest at this stage 
include analysts, batches of cells, plates, and rows or columns 
within the plate.

PLATE LAYOUT AND ASSAY UNIT: STRATEGIC 
DECISIONS

Assays with moderate to large variation in the parameters of 
the response curve associated with either plates or sections of 
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plates are likely to benefit from plate layouts and analysis 
methods that protect the assay results from location effects. 
Rather than use absolute measures of variation in these 
parameters as guidance, it is more appropriate to ask how 
these sources of variation compare with other measured 
sources of variation. For example, if the row-to-row variation 
in curve parameters is an order of magnitude smaller than 
the pooled estimate of variation around curves fit to each row, 
then it may not be necessary to use design and  analysis meth-
ods to protect the assay against row effects.

Even without evidence that location effects are a concern, 
consideration of experimental units (details in the next para-
graph) may lead to assay designs (and associated analyses) 
that will provide good protection against location effects. In 
most assay laboratories, samples are assigned to plate rows 
(or columns) and sample concentrations are assigned to plate 
columns (or rows). Often a multichannel pipette is used to 
dilute multiple samples simultaneously.

By definition, the experimental unit is the smallest unit 
randomly allocated to a distinct level of a treatment factor. 
Note that if there is no randomization, there is no experimen-
tal unit and (in nearly all cases) no experiment. Although it is 
possible to perform experiments without randomization, it 
is difficult to do well, and risky unless the experimental 
system is very well understood (7). Randomization is impor-
tant for several reasons. Randomization changes the sources 
of bias into sources of variation; in general, a noisy assay is 
better than a biased assay. Further, randomization allows 
estimates of variation to represent variation in the popula-
tion; this in turn justifies statistical inference (standard 
errors, confidence intervals, etc.). A common practice in cell-
culture bioassay is to rotate among a small collection of lay-
outs rather than use random allocation. Whereas rotation 
among a collection of layouts is certainly better than a fixed 
layout, it is both possible and practical to use carefully struc-
tured randomization on a routine basis, particularly when 
using a robot.

When samples are assigned to, for example, rows, the 
row becomes the experimental unit for the sample. Similarly, 
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when analyte concentrations are assigned to columns, the 
column becomes the experimental unit for concentration. This 
type of layout should be analyzed as a strip-plot or split-block 
design where the blocks may be plates or sections of plates 
(8–12). A further step would be to balance the locations of 
samples across rows and concentrations across columns, pos-
sibly using a double Latin square strip-plot design as detailed 
in Lansky (12).

Even in the absence of substantial data demonstrating 
that location effects are not a concern, it is wise to use a design 
that will both protect the assay results from location effects 
and allow the monitoring of location effects using the data 
produced by the assay in routine use. If a randomized (or a 
balanced rotation) strip-plot design is used and any one sample 
within each block is present in at least two rows (or columns), 
then there will be sufficient data for a direct measure of any 
location effect. If the replicated sample is made using refer-
ence or standard material and the two replicates of the sample 
are prepared independently, we can monitor the variation in 
the sample-preparation process, although the variation asso-
ciated with locations and sample preparations are now 
 confounded (this may be appropriate if both are thought to be 
small but should be monitored).

The assay size is an important practical issue. An assay 
is defined here as the smallest group of assay data that are 
performed and analyzed separately. Large assays generally 
produce more precise estimates of relative potency, are a pre-
requisite for more complex models [e.g., a nonlinear mixed 
strip-plot model (12) requires at least two plates], and give 
much better estimates for any variance  components estimated. 
Small assays produce more replicate assays with less effort. 
Some assay-release criteria (21) demand moderate to large 
numbers of assay replicates even from quite precise assays. 
Fortunately, at least some of the authors have recognized this 
as an unintended consequence of these criteria (personal com-
munication). Large designs combined with careful statistical 
modeling should produce better potency estimates for less 
overall effort, but this approach is potentially risky given the 
lack of clear regulatory guidance.
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The assay plate layout can change from development to 
validation. For production assays, we may not want or need 
the full curve, and we should use what we have learned from 
development and validation to choose the number of replicates 
to be used at each level of the design (i.e. how many rows/
sample, how many plates/assay, etc.). Uniformity trials (4,7,10) 
are a simple and effective way to estimate several sources of 
variation and check for location effects. During validation, we 
emphasize estimating variation from several sources as it 
affects the estimated relative potency. The sources of variation 
that may be of interest include assays within analyst and day, 
batches of cells, analysts, equipment, days, and laboratories. 
It is often valuable to analyze these sources of variation in 
detail to better understand an assay system, and then summa-
rize these as repeatability (variation among replicate samples 
close together in time by a single analyst using a single set of 
equipment), intermediate precision (variation within a labora-
tory across days or analysts), and reproducibility (variation 
among laboratories) (16). Factors that are expected to be 
 important are deliberately varied as part of a robustness study 
where we generally use small ranges on the independent vari-
ables and expect little effect on the measured potency as 
described in Torbeck (17).

The way a layout is used may change from validation to 
production assay. Only changes that the validation experi-
ment can support with valid statistical inference will be per-
missible between validation and production use. Assuming 
there are replicate assays within each analyst and day, we 
can estimate the repeatability directly. Similarly, if there are 
replicates of a sample within each assay, we can estimate 
within assay variation in potency directly. These estimates of 
variation allow us to reliably predict the performance of the 
assay system with various numbers of replicates at each 
level where we have direct replication. For example, with 
two replicate samples at potency 1.0 in each assay, we can 
predict the precision of potency when one, two, three, or more 
within assay replicates are combined. Similarly, if there are 
replicate assays within analyst and day, we can use the 
variation among these replicates to predict the precision of 
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potency with one, two, three, or more replicate assays during 
production use.

DESIGN OF THE VALIDATION EXPERIMENTS

Precision and Accuracy Experiment

The general scheme is to construct artificial samples at each 
of the several levels of true potency using reference materials 
(so the true potency is known), and then assay these artificial 
samples repeatedly to assess the accuracy and precision of the 
assay system across a relevant range of potencies. For an 
assay intended to support a product specification of 80% to 
125%, we might use true potencies of 0.64, 0.80, 1.0, and 1.25. 
On each of at least four days (8–20 days would be much better), 
at least two analysts assay each “sample” in two separate 
assays. If an assay can contain four or more samples, the vali-
dation experiment does not require additional assays to study 
multiple true potencies. The mean of the log potencies are 
then compared with the nominal log potencies to determine 
the accuracy of the assay separately at each true potency stud-
ied. The bias can be reported as a percent difference on potency 
scale. To assess the precision of the assay system, a variance 
component analysis should be conducted at each level of true 
potency (9,10,16), to produce a summary similar to Table 1. 
If the variance components for the different samples (true 
potencies) are comparable and either they come from indepen-
dent assays (in other words, each assay contains only refer-
ence and a single test sample) or a blocked analysis is used, 
then it is reasonable to use pooled estimates for each variance 
component as a precision summary instead of the “worst case” 
estimate in the right-hand column of Table 1. It can be very 
helpful to plot the estimated log potency versus the nominal 
log potency; this gives a “calibration curve” for log potency. 
We can use this calibration curve to illustrate the linearity 
and range of the bioassay. Another useful summary illustrates 
the precision that can be expected and the assay specifications 
that can be supported for various numbers of assays/run 
and runs (Table 2). In Table 2, we use only two variance 
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Table 2 Expected Total RSD as an Intermediate Precision for 
Various Numbers of Runs and Assays/Run Based on the Worst-
Case Values in Table 1

Runs (i) Assays/run (m) Total RSD Specification supported

1 4 6.5 19.50
1 5 6.38 19.14
2 2 4.95 14.86
3 5 3.64 10.91

Note: The specification supported column uses a simple 3*RSD limit, a tolerance 
interval approach may be even more appropriate.
Abbreviation: RSD, relative standard deviation.

 components, assays and runs (within run and between run, 
otherwise known as intermediate precision and repeatability). 
Note that the specification limits as listed in Table 2 do not 
allow any variation in the product itself (all lots are assumed 
to be at potency 1.0) and does not leave room in the specifica-
tion for any departure from perfect product stability; a statis-
tical approach that adjusts for these sources of variation is 
described by Dillard (22). To compute the  relative standard 
deviation (RSD) in Table 2, we exploit the fact that potency is 
nearly log-normally distributed; hence, the log of potency is 
nearly normal in distribution,

Table 1 Variance Component Analysis Results for Within Run 
(Repeatability) and Between Run (Intermediate Precision) 
Variability for Each of the Several True Potencies 

Potency 
0.64

Potency 
0.80

Potency 
1.0

Potency 
1.25

“Worst 
case”

Between run 
variance

0.00326 0.003 0.001 0.003 0.00326

Within run 
variance

0.0004 0.0003 0.004 0.0002 0.004

Note: For balanced designs, these can be estimated at each true potency using analy-
sis of variance method of moments estimators. The “worst case” column contains the 
largest value observed across the range of true potencies used for each of within and 
between run.
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Log(R) = β + ε,
Y = eβ+ε = eβeε

with ε = Total SD =  √ 
________

   
σ  2   run  ___ n   +   

σ 2    assay 
 ____ n*m     =  √ 

___________
    0.00326 ______ n   +   0.004 _____  n*m    

where n is the number of runs and m is the number of assays/
run, and the variance estimates are taken from Table 2. 
Because we compute the variance components on log potency, 
ε is in log potency units. The percent RSD, a multiplicative 
error on potency scale, is computed as %RSD = 100 × exp(Total 
SD − 1). A substantial advantage of the summary in Table 2 is 
that it informs the discussion between assay managers and 
product managers about how to set product specifications. In 
parti cular, this approach makes it very clear how much rou-
tine assay effort is needed to support various specifications. If 
the effort needed to support a mandated specification is judged 
to be excessive, then the assay can be improved to yield more 
precise  estimates of log potency.

Robustness Experiment

A separate experiment to study robustness can efficiently 
check that the allowed ranges for many of the assay inputs 
are appropriate. In a robustness experiment, we are seeking 
to demonstrate that at least several factors and interactions 
among these factors have no important effect on the assay. By 
using a minimal fractional factorial design [i.e., a Plackett–
Burman design (10)], we can check on all factors and many 
interactions. Note that our goal in the validation of robustness 
is not to study interactions among the factors we are studying, 
but to confirm that neither the factors nor any interactions 
among the factors have effects that are large enough to be of 
concern. Because the goal here is to show that no factor or 
interaction is important, we must determine prior to the 
experiment the effect sizes that we consider unimportant. 
These effect size limits establish an indifference zone. In an 
assay system supporting product release to a specification of 
80% to 125%, it may be quite reasonable to have an indiffer-
ence zone from −6% to 6% due to variation in assay inputs; in 
doing so, it would be appropriate to demand slightly higher 
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precision from the assay system. It would be a mistake to 
simply test all factors for significant effects; instead a confi-
dence interval should be put on each factor’s effect. If all 
 factors have confidence intervals that lie entirely within the 
indifference zone, then the assay can be considered robust. 
This approach is a simple generalization of a recently pro-
posed and substantially improved way to assess similarity in 
bioassay (14,15), and is quite different from the usual analysis 
approach in a fractional factorial (17). The critical difference 
here is that when we are seeking to show that factors are not 
important, the analysis approach using confidence intervals 
on effect sizes compared with an appropriately selected 
 indifference zone is more appropriate than conventional 
hypothesis tests (14,15).

SUMMARY

Biological assays are often noisy and laborious. With careful 
application of experimental design, cell culture bioassays can 
be made quite accurate and precise. The core information 
needed for validation can come from two experiments. One 
experiment studies accuracy and precision followed by a vari-
ance component analysis and a summary table that describes 
the expected performance of the system at various levels of 
replication. A second experiment uses a minimal fractional 
factorial design to study robustness, followed by a  comparison 
of confidence intervals on effect sizes with a previously estab-
lished indifference zone.
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BACKGROUND

Purified proteins of high therapeutic value can be obtained 
from human plasma using the fractionation technology origi-
nally proposed by Dr. Edwin J. Cohn of Harvard Medical 
School in early 1940s (1). The process employs various combi-
nations of alcohol concentration, pH, ionic strength, tempera-
ture, and time to separate a number of fractions from human 
plasma. These fractions are rich in various proteins, such as 
fibrinogen, coagulation factors, von Willebrand Factor, immu-
noglobulins, albumin, α1 antitrypsin, and the like. Various 
downstream purification steps are then applied to purify each 
protein of interest in its therapeutic dosage form. Some of 
these downstream processes also employ various virus inacti-
vation/reduction technologies to ensure safety of the plasma-
derived products. There are many variations of the fractionation 
process utilized by the major manufacturers––some employ-
ing different agents for precipitation, and some using various 
upstream adsorption and separation steps. The fractionation 
industry boasts its long history of therapeutic success, prod-
uct reliability, and a high degree of product-safety record.

The purification processes used to obtain therapeutic 
plasma proteins at industrial scale are old and established. 
Often, they also lack the complete  package of necessary pro-
cess development and validation data when held against 
today’s standards. These data voids can be successfully back-
filled by dividing a complex purification process into manage-
able process modules; constructing qualified down-scale 
models of these modules; performing designed experiments 
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that include systematically selected process parameters at 
their ranges; and evaluating the quality attributes of the 
intermediate or final product. The design of experiment tech-
niques provide a more cost-effective and systematic way to 
study these parameters when compared with other forms of 
experimentation, as these processes are multifactorial with 
complex inter-relationships between process parameters (2). 
The down-scale studies also provide an excellent foundation 
for a well-designed process validation protocol and a success-
ful validation study.

When developing a purification process for a new plasma 
protein drug  substance, designed experiments can be highly 
useful in process-parameter screening, optimization and dem-
onstration of process robustness, similar to its use in the main-
stream pharmaceutical industry described in this book by 
other contributors. Generally, biological products are complex 
mixtures with high levels of hetero geneity. Well-thought out 
designed experiments are the only reasonable means to resolve 
such complex relationships and obtain useful data.

VALIDATION STRATEGIES FOR EXISTING PLASMA 
FRACTIONATION PROCESSES

In 1999, a Technical Workshop was held by the Parenteral 
Drug Association (PDA) to come up with a reasonable strategy 
for the validation of existing plasma fractionation processes. 
The workshop and subsequent effort by many led to a set of 
guidelines for the validation of existing plasma fractionation 
processes (3) that are shown below:

● Divide the manufacturing process into a number of 
“Process Modules;”

● Define process steps for each process module;
● Identify/characterize process intermediate(s);
● Identify/define process control parameter(s);
● Identify/meet process validation requirements for proc-

ess step(s);
● Perform process validation for steps where validation 

is lacking;
● Compile and prepare process validation document.
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As emphasized by the task force, down-scale qualification 
studies to establish robustness of existing processes are viewed 
as integral to this validation approach. In the present article, 
we will describe the strategy that can be used to generate the 
precursor information leading to down-scale studies and the 
use of experimental design approach in these studies. We will 
provide some practical examples of cases where meaningful 
data were generated to compliment validation activities.

Strategies for Down-Scale Process Qualification

The development of a qualified down-scale model of a process 
module is integral to the approach of process validation using 
bench-scale experiments, as described earlier. We have devel-
oped down-scale models of process steps ranging from  various 
types of process chromatography for protein purification to 
separation by precipitation and filtration. These down-scale 
models have been utilized to  evaluate the effects of relevant 
process parameters on product-quality attributes. The normal 
logical sequence of process development, of course, is bench 
scale to pilot scale to full scale. However, for many plasma 
protein purification processes, a reverse order needs to be 
 followed. As licensed full-scale processes already exist, the 
full-scale process steps need to be scaled down to construct 
small process models in order to evaluate the robustness of 
process parameters on the product without impacting full-
scale production. These models can also be utilized to evaluate 
process changes, improvements, and optimizations easily and 
economically.

The models can be scaled to various sizes to fit the needs 
of the experiment. For example, a very small-scale nanofiltra-
tion system, such as a Planova P-15 hollow-fiber cartridge 
with 0.001-m2 surface area (Asahi Kasei Corporation, Japan), 
can be used to study virus retention capabilities of a virus 
reduction step in a biological manufacturing process, whereas 
a scaled-up version of the same system with a surface area of 
0.01 m2 provides an excellent way to study the nanofiltration 
process variables. In a nanofiltration validation study, a feed 
sample is typically spiked with a known quantity of a model 
virus. The mixture is filtered under the expected process 
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conditions, and virus retention is measured. Due to the cost 
and hazards of working with model viruses, the smallest vali-
dated down-scale model developed with a 0.001-m2 nanofilter 
is preferable. However, for demonstration of the robustness of 
process parameters, a model consisting of a larger 0.01-m2 
nanofilter is desirable as it allows the filtration of a larger 
quantity of material for all of the testing needed to demon-
strate product-quality attributes. Both systems are directly 
scalable to the production scale 1.0-m2 cartridge manufac-
tured by Asahi Kasei. It should be noted that such nicely scal-
able systems do not exist for all applications; therefore, models 
often have to be crafted, and at times approximated, for other 
process steps, such as chromatography, depth filtration, pas-
teurization, and the like.

Figure 1 provides a logical step-by-step approach to 
process qualification using down-scale model and bench 
experiments. When validating an existing process module, 
one has to decide whether to perform only a target valida-
tion, or evaluate process ranges. We have taken the approach 
of qualifying process parameter ranges at bench-scale exper-
iments, and validating the corresponding targets in full 
scale. Our effort for the qualification of the critical parame-
ter ranges for existing process modules generally start with 
a thorough evaluation of what is known about the process 
step of interest by consulting various sources of information, 
such as manufacturing procedures, development data, 
license documents, interview of operators, and the like. We 
have successfully employed cause–effect relationships and 
decision-making tools, such as fish-bone diagrams, to assist 
us with capturing all important process information. Figure 2 
provides an example of one such attempt where we identi-
fied and captured all possible process information and their 
sources for an affinity  chromatography purification step for 
a purified coagulation factor production process.

Once enough process knowledge has been acquired, the 
next step involves the development and qualification of an 
appropriate down-scale model where the parameters of inter-
est can be effectively studied. We normally qualify our down-
scale models by processing a small portion of the input 
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intermediate obtained from manufacturing through the down-
scale model, performing appropriate assays on the output, 
and comparing the results with those obtained from actual 
product processed by manufacturing at the corresponding 
step. After an appropriate down-scale model has been devel-
oped and qualified, preliminary screening studies can begin. 
In this phase of experimentation, the goal is to evaluate the 

Figure 1 Process qualification strategy using bench-scale process 
models.
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effects of a wide array of process parameters with fairly wide 
ranges by using economical forms of experimental design and 
less than full spectrum of testing in order to keep the time 
and resource requirements within limits. Using a number of 
experimental data analysis tools, it is possible to rank the key 
parameters in the order of their importance on how they influ-
ence the quality of the process output. An example of this 
approach is described later in this article. Once the key para-
meters have been identified, we evaluate whether the ranges 
tested are appropriate for inclusion in a subsequent compre-
hensive process robustness study. For example, if we have 
evaluated the ranges for some key parameters that are well 
outside the normal manufacturing practice and, at these 
extremes, the quality of the output is outside our acceptable 
limits, then we would normally consider narrowing the ranges 
in subsequent robustness evaluations. Alternatively, if we 
were too conservative during our screening experiments in 
the selection of the range of a process parameter, and the 
effect of this process parameter on the quality of the process 
output is minimal, we would expand the range of this parameter 

Figure 2 Cause-and-effect (fish-bone) diagram for affinity chroma-
tography purification.
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in our subsequent robustness study. It is sometimes advisable 
to conduct additional screening experiments to gain enough 
confidence that, with the modifications in parameter ranges, 
there will be no surprises when more comprehensive robust-
ness studies are performed.

We conduct comprehensive robustness studies under rig-
orous protocols. Acceptance criteria are decided and approved 
up-front. All process discrepancies are recorded and evaluated 
against the objective of the study. Resource availability per-
mitting, we often employ factorial experimental design with 
enough power that permits the evaluation of all main effects 
and most interaction effects, keeping confounding to a mini-
mum. The results of the experiments are then compared 
against the acceptance criteria. If all acceptance criteria are 
met, the process is declared qualified and robust within the 
ranges of the parameters tested.

Use of Down-Scale Process Qualification Approach 
for Establishing Process Robustness

Example 1: Robustness of an Affinity Chromatography 
Step for Purification of a Coagulation Factor

Our manufacturing process for the purification of a protein 
intermediate employs an affinity chromatography step where 
the protein is captured using a monoclonal antibody coupled to 
a sepharose resin. The protein is then eluted using an elution 
agent. In order to establish robustness of this step, we first 
developed and qualified a down-scale model using a 90-mL size 
reproduction of the industrial scale affinity column. The geo-
metry of the column and the conditions were selected such that 
the linear flow rate could remain consistent between the down-
scale and the full-scale model. We then listed all the parameters 
that are relevant at this step along with their ranges. We utilized  
various information sources during this effort, including manu-
facturing procedures (current and past versions), license docu-
ments, various development and scientific reports, actual 
production data, and verbal information exchange with produc-
tion personnel. The cause-and-effect (fish bone) diagram (Fig. 2) 
discussed earlier compiled the gathered information.
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The next step was to select the parameters and ranges we 
wanted to study in our down-scale model. Here, a careful scien-
tific judgment had to be made as we could study only so many 
parameters in a reasonable amount of time. We designed an 
initial screening study using a 2(4-1) fractional factorial model. 
We decided to study the effects of four process parameters: load 
amount, load flow rate, load salt concentration, and wash flow 
rate at their selected high and low settings as shown in Figure 
3. The high and low settings of the process parameters were 
chosen based on the license documents, manufacturing process, 
and actual production data (including various deviations) to 
accommodate normal process fluctuations. The model was con-
structed using a statistical software package JMP (4). Table 1 
shows the design table along with specific high and low settings 
of the selected process parameters. Two output response vari-
ables, % yield and specific activity of the protein, were mea-
sured. The experimental results were analyzed using JMP. The 
results indicated that by loading more protein on the column, 
the yield at the step could be increased. The yield was also 
related to the salt concentration of the load solution and a 
higher salt concentration resulted in a slightly lower yield. The 
effect plots for this analysis are shown in Figure 4. The analysis 
of the results was also able to reveal an interaction effect 
between the load amount and the load salt concentration (inter-
action plots not shown). By selecting a fractional factorial design 
for this initial screening study, we were able to economize on 
the time and resource requirements for the experiments. 

% Yield

Load Flow Rate 
1.0, 2.5 CV/h 

Load Amount 
540, 1440 U 

Salt Conc. 
0.3, 0.8 M 

Wash Flow Rate 
1.0, 2.5 CV/h 

Figure 3 Process conditions studied for immunoaffinity chromato-
graphy design of experiments (DOE) study.
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Table 1 Design Table for Screening Studies on Affinity 
Purification of a Protein Using Monoclonal Immunoaffinity 
Column (24-1 Fractional Factorial Design)

Process parameters

Run Pattern
Load 

amount (U)
Salt conc. 

(M)
Load flow rate 

(CV/hr)

Wash 
flow rate 
(CV/hr)

1 − − − − 540 0.3 1.0 1.0 
2 + − − + 1440 0.3 1.0 2.5 
3 − + − + 540 0.8 1.0 2.5 
4 + + − − 1440 0.8 1.0 1.0 
5 − − + + 540 0.3 2.5 2.5 
6 + − + − 1440 0.3 2.5 1.0 
7 − + + − 540 0.8 2.5 1.0 
8 + + + + 1440 0.8 2.5 2.5 

Pattern column indicates the high (+) and the low (−) settings of the selected process 
parameters.
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Figure 4 Effects plots for immunoaffinity chromatography screen-
ing study.

However, we sacrificed on the ability of this design to resolve all 
interaction effects. In fact, in the 2(4-1) design, the main effects 
are confounded with the three factor interactions, and two 
 factors interactions are confounded with the other two factor 
interactions. Ordinarily, this does not result in any serious 
problem since, for most processes, three factor interactions are 
considered small and are generally neglected. Thus, the inter-
action between the load amount and the load salt concentration 
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is  confounded with the interaction between load flow rate and 
wash flow rate. However, as the load amount and the load salt 
 concentration are themselves larger, it is logical to assume that 
the interaction is between load amount and load salt concentra-
tion and not load flow rate and wash flow rate. Therefore, 
although from the results of this study we could not conclu-
sively make a judgment on the exact nature of the interactions, 
it was reasonable to surmise that interaction effects are involved 
in the process performance.

The qualification study for the affinity purification step 
was carried out using the same down-scale process model used 
for the screening studies. For the qualification study, the 
experimental design was expanded to a full factorial model 
using four process variables studied earlier. The use of the full 
factorial model doubled the number of experimental runs but 
provided the statistical power to resolve all the main and 
interaction effects. Table 2 shows the design table along with 
the high and low settings of the selected process parameters. 
Adjustments in the settings for the load amount were made to 
accommodate the possibility to load more protein on the 
column in order to increase the batch size, and the settings for 
load salt concentration were also refined based on the findings 
from the screening study to minimize the likelihood of any 
influence of this parameter on the results. The results of the 
qualification study were analyzed by the statistical software 
JMP. The results confirmed the robustness of the process in 
terms of yield, as this parameter stayed virtually unchanged 
with changes in chromatography flow rate variables (Fig. 5). 
There was a decrease in the yield when higher load amount 
was used. The decrease in yield was due to exceeding of the 
capacity of the column, supported by the fact that active coag-
ulation factor could be detected in the column flow-through 
fractions at high load conditions. The specific activity (Fig. 6) 
was higher with higher load, perhaps due to the fact that the 
affinity matrix preferentially bound coagulation factor mole-
cules in their native form with higher activity. The activation 
products remained low for all the conditions studied. The sta-
tistical analysis also confirmed the presence of an interaction 
between the column load amount and salt concentration in 
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Table 2 Design Table for Process Qualification Study for Affinity 
Purification of a Protein Using Monoclonal Immunoaffinity 
Column (24 Full Factorial Design with Center Points)

Process parameters

Run Pattern
Wash flow 

rate (CV/hr)
Load flow 

rate (CV/hr)
Salt conc. 
(moles)

Load amount 
(U)

1 − − − − 1.0 1.0 0.4 540
2 + − − − 2.5 1.0 0.4 540
3 − + − − 1.0 2.5 0.4 540
4 + + − − 2.5 2.5 0.4 540
5 − − + − 1.0 1.0 0.8 540
6 + − + − 2.5 1.0 0.8 540
7 − + + − 1.0 2.5 0.8 540
8 + + + − 2.5 2.5 0.8 540
9 − − − + 1.0 1.0 0.4 1738
10 + − − + 2.5 1.0 0.4 1738
11 − + − + 1.0 2.5 0.4 1738
12 + + − + 2.5 2.5 0.4 1738
13 − − + + 1.0 1.0 0.8 1738
14 + − + + 2.5 1.0 0.8 1738
15 − + + + 1.0 2.5 0.8 1738
16 + + + + 2.5 2.5 0.8 1738
17 0 0 0 0 1.75 1.75 0.6 1139
18 0 0 0 0 1.75 1.75 0.6 1139
19 0 0 0 0 1.75 1.75 0.6 1139
20 0 0 0 0 1.75 1.75 0.6 1139

Note: Pattern column indicates the high (+) and the low (−) settings of the selected 
process parameters. The pattern 0000 indicates that the parameter settings are at 
the center point of the ranges.
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Figure 5 Effects plot (% yield) for immunoaffinity chromatography 
process qualification study.
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the load demonstrated by a Pareto plot showing the relative 
importance of main effects and interaction effects (Fig. 7). The 
yield decrease was more substantial when the load amount 
was increased at higher salt concentration versus at lower 
salt concentration. The primary conclusions we made from 
these studies are the following:

1. The affinity chromatography process can be consid-
ered robust within the process parameter ranges 
studied using a qualified down-scale model.

2. The factors that had influence on yield were load 
amount and load salt concentration. With respect to 
column load amount, care should be exercised to 
ensure that the capacity of the column is not exceeded. 

Figure 6 Effects plot (specific activity) for immunoaffinity chro-
matography process qualification study.

Figure 7 Pareto plot demonstrating the relative importance of 
main effects and interaction effects for immunoaffinity chromato-
graphy step.
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When loading higher amounts of load material on the 
column, a lower salt concentration should be main-
tained to minimize any potential yield loss.

Example 2: Robustness of Pasteurization and Precipitation 
Steps in a Fractionation/Purification Process

The production process for protein prepared by fractionation/
purification includes a heat inactivation step to ensure viral 
safety of the product. The heat inactivation step is followed by 
a precipitation step that further purifies the product. The pur-
pose of our study was to determine whether the process steps 
are robust within the parameter ranges routinely used in 
manufacturing.

As before, the effort involved the development of a down-
scale model of the steps that can be reproduced on the bench. 
As the precipitation step follows the heat inactivation step and 
may remove any aggregates formed during hearing, the two 
steps are clearly coupled. For example, under conditions out-
side manufacturing limits, aggregates may be generated in 
higher-than-usual quantities such that the subsequent precip-
itation step may not be able to effectively remove them. Instead 
of evaluating them separately, we therefore opted to study the 
two consecutive steps together as a process segment in our 
qualification studies in order to fully understand the inter-
action effects between the two steps. This approach, however, 
increased the number of factors that we needed to evaluate 
and complicated the design of experiments for the qualification 
study. Thus, the preliminary screening studies were first 
 performed separately for the two steps to simplify the experi-
mental methods.

The screening study conducted for the heat inactivation 
step included a full factorial experiment on the following pro-
cess variables: (i ) stabilizer concentrations; (ii ) protein con-
centration during pasteurization; and (iii ) pasteurization time 
and temperature combinations. The ranges of various param-
eters investigated are shown in Figure 8 as a cause-and-effect 
diagram. The amount of aggregates  generated during heating 
was the measured effect. The study design is shown in Table 3. 
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Table 3 Design Table for the Heat Inactivation Screening Study 
(24 Full Factorial Experimental Design)

Process parameters

Run Pattern
Protein 

conc. (%)
Stabilizer 1 
conc. (kg/kg)

Stabilizer 2 
conc. (kg/kg)

Time/
temperature

1 − − − − 5.5 0.6 0 A
2 + − − − 7.7 0.6 0 A
3 − + − − 5.5 0.8 0 A
4 + + − − 7.7 0.8 0 A
5 − − + − 5.5 0.6 0.04 A
6 + − + − 7.7 0.6 0.04 A
7 − + + − 5.5 0.8 0.04 A
8 + + + − 7.7 0.8 0.04 A
9 − − − + 5.5 0.6 0 B
10 + − − + 7.7 0.6 0 B
11 − + − + 5.5 0.8 0 B
12 + + − + 7.7 0.8 0 B
13 − − + + 5.5 0.6 0.04 B
14 + − + + 7.7 0.6 0.04 B
15 − + + + 5.5 0.8 0.04 B
16 + + + + 7.7 0.8 0.04 B

Time/temperature A: 60°C/10 hr 35 min.
Time/temperature B: 63°C/10 hr 35 min.

The results were analyzed using the statistical analysis 
 software JMP. Figure 9 shows the effect plots for the para-
meters evaluated. As expected, the heating time and tempera-
ture combinations had the most significant influence on the 

% Polymer 

Protein 
5.5%, 7.7% 

Stabilizer 1 
0.6, 0.8 kg/kg 

Stabilizer 2 
0, 0.04 kg/kg 

Heating Conditions
A: 60°C/10 h 35 min, B: 63°C/10 h 35 min

Figure 8 Heat inactivation conditions for the screening study.
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amount of polymer generated, followed by the concentrations 
of stabilizer 1 and stabilizer 2. A Pareto analysis (not shown) 
confirmed these findings.

The precipitation step in the purification process 
involves a number of process variables, including precipitant 
concentration, protein concentration, ionic strength, time of 
precipitation, temperature of precipitation, and pH during 
precipitation. Due to the large number of process variables, a 
judgment had to be made on the most important variables to 
include in the study. We rationalized that if we study the 
most important parameters in depth and hold the other 
parameters at their worst case or the most extreme settings, 
we should be able to investigate successfully the overall 
robustness of the process. The screening study for the pre-
cipitation step was a full factorial experiment to evaluate the 
following process variables: (i ) precipitant concentration; (ii ) 
pH during precipitation; and (iii ) temperature during 
 precipitation. The cause-and-effect diagram shown in Figure 10 
describes the variables and their ranges included in the 
screening study. The experiments were conducted according 
to the design table provided by the statistical software JMP 
shown in Table 4. The results were analyzed and the effect 
plots were constructed as shown in Figure 11. All three 
 process variables influenced percent aggregate (% polymer 
on the figures) in the filtrate. A Pareto analysis (not shown) 
determined that the pH and precipitant concentration had 
the highest impact on percent polymer, followed by relatively 
minor influences of the two-factor interaction effects and 
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Figure 9 Effects plots for the heat-inactivation screening study.
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Table 4 Design Table for Protein Precipitation Screening Study 
(23 Full Factorial Experimental Design with Center Point)

Process parameters

Run Pattern
Precipitation temp. 

(°C) pH
Precipitant conc. 

(%)

1 − − − 2 7.55 4
2 + − − 8 7.55 4
3 − + − 2 8.15 4
4 + + − 8 8.15 4
5 − − + 2 7.55 5
6 + − + 8 7.55 5
7 − + + 2 8.15 5
8 + + + 8 8.15 5
9 000 5 7.85 4.5

precipitation temperature. The results also indicated that 
higher pH and higher concentrations of precipitant at lower 
precipitation temperature would result in higher aggregate 
removal from the protein solution.

The information obtained from the screening studies 
 provided us with the direction to take for a larger qualifica-
tion study. It was clear from a scientific standpoint that heat 
inactivation of a protein solution generates some protein 
aggregates. The subsequent precipitation step purifies the 

% Polymer 

pH
7.55, 8.15

Temp.
2°C, 8°C 

Precipitant Conc. 
4%, 5%

Fixed:
Protein 5%, Salt Conc. 0.2%, Time 2h 

Figure 10 Cause-and-effect  diagram of process variables for precipi-
tation screening study.
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protein solution. As the second step is complimentary to the 
first step, it was obvious that we needed to study these two 
steps coupled together as a process module in order to fully 
assess the robustness of the process. However, coupling the 
two steps together made the list of factors to study very long, 
and the next challenge was to find an experimental design 
that would allow us to study these factors adequately in a rea-
sonable amount of time. We chose an L18 Hunter orthogonal 
array model, available in JMP software package, which 
allowed the evaluation of 11 factors at one time in 18 experi-
mental runs with three factors out of 11 studied at three levels. 
The experimental design is shown on Table 5. For simplicity, 
pasteurization time and temperature were combined into one 
variable and studied at three discrete time/temperature con-
ditions. We included starting intermediate lot as one of the 
factors, and three separate lots were included in the study. 
Some nonlinearity was suspected with respect to pH during 
precipitation, and this factor was studied at three levels. The 
two-level factors studied were stabilizers 1 and 2 concentra-
tions, protein concentration during heating, protein concen-
tration during precipitation, precipitant concentration, ionic 
strength during precipitation,  precipitation time, and precipi-
tation temperature. Down-scale experiments were performed 
with the selected factors set at the appropriate levels. The 
product quality attributes were measured after processing the 
protein to the final bulk stage and  subjecting the material to 
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a subset of the validated product release assays. The accep-
tance criteria were set based on the final product specifica-
tions, accounting for the variability that may enter into the 
picture due to the scale of operation. The protein solution 
 prepared according to the experimental design overwhel-
mingly passed the acceptance criteria except for a few 
instances. These results were investigated further, and in all 
cases, assay discrepancies were noted. We could then make 
the conclusion that the process parameters of the heat inacti-
vation and precipitation steps, within the ranges studied, 
 provided material with acceptable quality, thus confirming 
the robustness of the process.

Lessons Learned from the Down-Scale 
Qualification Studies

The down-scale process models provide an easy way to evalu-
ate the effect of  process parameters on the quality attributes 
of a product. These models are  especially useful in a situation 
where a validation databank must be backfilled for existing 
full-scale manufacturing processes that were not validated 
during  implementation according to the standards of today.

We presented here examples of two separate purification 
processes, where experimentation using qualified down-scale 
models and sound experimental design techniques provided 
important information regarding the effects of various process 
parameters on selected quality attributes of the output (prod-
uct). In the first example describing a chromatographic purifi-
cation process for a protein, the down-scale studies showed a 
lack of effect of the load and wash buffer flow rates on yield. 
In comparison, the load amount had a distinct relationship 
to yield. Purity, as judged by SDS-PAGE, Western blots, and 
specific activity remained unaffected by variation of any of the 
parameters within the ranges studied. Although, this lack of 
association seemed uninteresting to our development scien-
tists, our validation specialists were particularly happy, as 
we, in effect, proved that the quality attributes of the output 
remain unchanged when the control parameters in this seg-
ment of the process changes. We did detect, however, several 
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interaction effects that were of high interest to our manufac-
turing colleagues.

In the second example, we demonstrated that a process 
module might be comprised of one or more unit operations. 
In this example, the process module investigated comprised of 
several unit operations—a heat inactivation step, a precipita-
tion step, and a filtration step. Depending on the complexity of 
the steps, it may be beneficial to separate them initially and 
evaluate their individual characteristics. However, as the steps 
may be coupled, as was the case in the example provided, a 
qualification study should evaluate the process module as a 
whole. In the example provided, we were able to clearly dem-
onstrate the robustness of the module by comparing the output 
of the module against a subset of the established finished-  
product specifications.

In conclusion, the down-scale studies provided a thor-
ough understanding of the effect of process parameters within 
their respective manufacturing or license ranges. The down-
scale studies demonstrated the robustness of these parame-
ters within their ranges and provided the basis for conducting 
full-scale validation studies. The approach for establishing 
process robustness by down-scale studies followed by 
full-scale validation appears to be a reasonable strategy for 
validating the existing plasma-derivative manufacturing 
processes.
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INTRODUCTION

Response Surface Methodology (RSM) is a well-known statis-
tical technique (1–3) used to define the relationships of one or 
more process output variables (responses) to one or more pro-
cess input variables (factors) when the mechanism underlying 
the process is either not well understood or is too complicated 
to allow an exact predictive model to be formulated from 
theory. This is a necessity in  process validation, where limits 
must be set on the input variables of a process to assure that 
the product will meet predetermined specifications and quality  
characteristics. Response data are collected from the process 
under designed operating conditions, or specified settings of 
one or more factors, and an empirical mathematical function 
(model) is fitted to the data to define the relationships between 
process inputs and outputs. This empirical model is then used 
to predict the optimum ranges of the response variables and 
to determine the set of operating conditions which will attain 
that optimum. Several examples listed in Table 1 exhibit the 
applications of RSM to processes, factors, and responses in 
process validation situations.

EMPIRICAL MODELS IN RESPONSE SURFACE 
METHODOLOGY

The most useful empirical models are the second-order polyno-
mial models and occasionally a first- or third-order polynomial. 
The measurement scales of the responses or factors may be 
transformed to another metric, such as a logarithmic scale, or 
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a nonlinear model might be used (2,3), but these are more com-
plicated situations and will not be discussed in this chapter.

Second-order polynomial models are versatile enough to 
describe most relationships between factors and responses. 
These models consist of an intercept term, first-order and 
second-order terms for each factor, and two-factor interaction 
terms for each combination of two factors. The second-order 
model is shown below for two factors and for multiple factors.

Two factors: Y = β0 + β1X1 + β2X2 + β11X       1
2  + β22X       2

2  + β12 X1X2

Multiple (k) factors: Y = β0 +  ∑ 
i=1

   
k

   βiXi  +  ∑ 
i=1

   
k

   βii  X  i  
2   +  ∑ 

i=1
   

k-1

    ∑ 
 j>i

   
k

    βij Xi Xj

EXPERIMENTAL DESIGNS FOR RESPONSE 
SURFACE METHODOLOGY

Some general criteria for setting factor levels in a second-order 
response surface design are the following:

1. Coverage of the experimental region (factor space);
2. Symmetry about the center of the region;

Table 1 Applications of Response Surface Methodology
Processes Factors Responses

Milling
 (wet granulation)

Types of blades
Rotation speed
Milling time
Milling temperature
Solvent feed rate
Solvent type

Particle size
Fines, oversize
Agglomeration
Flowability

Blending Blending time
Mixer type
Feed rate

Homogeneity

Tablet coating Batch size
Spray rate
Inlet air temperature
Ingredient levels

Dissolution
Content uniformity
Appearance
Coating efficiency

Compression Feed rate
Piston travel
Type of press
Powder feed system

Weight
Thickness
Hardness
Content uniformity
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3. The number of distinct factor-level combinations at 
least equal to the number of terms in the model;

4. An imbedded 2k-p factorial structure is necessary for 
the estimation of two-factor interactions;

5. Three levels of each factor at a constant level of the 
other factors are required for the estimation of qua-
dratic effects.

As shown in Table 2, the number of terms in the model 
grows rather quickly as the number of factors increase in the 
study. As the number of distinct experimental runs in the 
design must be equal to or greater than the number of terms 
on the model, a design can become costly as more factors are 
added to the program. For this reason, most RSM studies are 
usually limited to no more than five factors.

The experiment design involves selecting multiple levels 
of each factor to define the conditions for each experimental 
run, and some subject matter expert/end-user knowledge is 
required to select the range of the factor levels to cover. As the 
optimum level of the response is not known in advance, at least 
five factor levels should be used, and the range of these levels 
should be as wide as possible with the low and high levels 
determined by the end user’s input of feasibility and safety 
considerations.

For two or more factors, the central composite design 
(CCD) is widely used and has certain advantages. The CCD 

Table 2 Number of Terms in the Second-Order Model by Number 
of Factors

Number of terms by type Total
termsFactors k Intercept Linear Quadratic Interaction

1 1 1 1 0 3
2 1 2 2 1 6
3 1 3 3 3 10
4 1 4 4 6 15
5 1 5 5 10 21
6 1 6 6 15 28
7 1 7 7 21 36
8 1 8 8 28 45
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for two factors, as shown in Table 3, is composed of a 22 facto-
rial design with four factorial run conditions (runs 1–4), one 
or more center points, or run conditions at the average of the 
low and high levels of each factor (run 5), and four star or 
axial points, which are run conditions where one factor is held 
at the center-point level and the other factor at another level, 
± α (runs 6–9). The factor settings are listed in “coded” form as 
−1 for the low factorial level, +1 for the high factorial level, 
and 0 for the center-point level. A graphical layout of the factor 
levels for these experimental runs is depicted in Figure 1.

The value of α is not critical, but to achieve a rotatable 
design for two  factors, α = √2, which places all the factorial 

Figure 1 Central composite design.
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Table 3 Central Composite Design Conditions 
for Two Factors
Run number Factor X1 Factor X2

1 −1 −1
2 +1 −1
3 −1 +1
4 +1 +1
5  0  0
6 −α  0
7 +α  0
8  0 −α
9  0 +α
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and star points on a circle. A rotatable design has the desir-
able feature that the model prediction variance is a  function of 
the distance from the center. In general, for k factors, rotat-
ability is achieved with, α =   4 √ 

__
 F   where F is the number of fac-

torial points in the design.
If α = 1, the layout becomes a 32 design, which is not a 

rotatable design, but does lend some simplicity in that only 
three levels of each factor are used instead of five. This may be 
useful if the factor levels are difficult to change, such as the 
installation of equipment (changing extruder screws) or the 
need for system equilibration when adjusting temperatures.

It is recommended that the center-point conditions be repli-
cated to give an estimate of experimental variation. The recom-
mended number of center points can vary, but for simplicity, it 
has been recommended (3) that 3–5 center points be used in a 
CCD. The CCD is useful for building RSM models, as the design 
can be conducted in a sequential order, enabling the experimenter 
to consider models of increasing complexity as the experimental 
program proceeds. For example, first run a 22 factorial design 
with two center points, enabling the estimation of main effects 
and the two-factor interaction. The second phase would add the 
star points with two additional center points. The agreement of 
the two sets of center points can determine if a shift has occurred 
in the time between the two sets of experiments (block effect).

A non-CCD is another alternative if the program is con-
ducted sequentially. If the results from the 22 design indicate 
that the factor space should be extended in a particular direc-
tion, then two star points can be added to a corner as shown in 
Figure 2. This design also meets all the requirements for a 
second-order design. For four or more factors, a CCD might 
use an imbedded fractional factorial design plus center points 
and the 2k star points, where k is the number of factors.

A CCD for three factors is listed in Table 4, and includes 
an imbedded 23 factorial design with center points and three 
pairs of star points. For rotatability, α = 1.682, as there are 
F = 8 factorial points in the design. A three-block sequential 
strategy for a three-factor CCD is listed in Table 5, where:

1. A 23-1 fractional factorial with two center points gives 
an estimate of first-order effects;
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2. The other half of the 23 factorial design with two 
center points allows for the estimation of two-factor 
interactions; and

3. The six star points plus two more center points 
allow for the estimation of the quadratic terms. The 
six center points give an estimate of experimental 

Figure 2 Non–central composite design.
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Table 4 Central Composite Design Conditions for 
Three Factors
Run number Factor X1 Factor X2 Factor X3

 1 −1 −1 −1
 2 +1 −1 −1
 3 −1 +1 −1
 4 +1 +1 −1
 5 −1 −1 +1
 6 +1 −1 +1
 7 −1 +1 +1
 8 +1 +1 +1
 9  0  0  0
10 −α  0  0
11 +α  0  0
12  0 −α  0
13  0 +α  0
14  0  0 −α
15  0  0 +α
α = 1.682 for rotatability.
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variations and also allow the estimation of block 
effects.

Another important class of RSM designs, in addition to 
the composite designs, is the Box–Behnken design (2,3). These 
designs are not built up from factorial designs, but are used for 
second-order fitting from the start, and are more economical to 
use with larger numbers of factors; say, greater than four. The 
design layout for a three-factor Box–Behnken design is listed 
in Table 6.

Table 5 Sequential Approach for Conducting a Three-Factor 
Central Composite Design in Three Blocks 

X1 X2 X3

Block 1 Perform a 23−1 fraction factorial design plus 2 center points. Estimate 
the factor main effects (first-order effects) and the overall curvature effect.
− − +
+ − −
− + −
+ + +
0 0 0
0 0 0

Block 2 Run the other half of the 23−1 design plus 2 center points. A foldo-
ver design; estimate the three two-factor interaction effects, re-estimate 
main effects and overall curvature, and the block effect.
− − −
+ − +
− + +
+ + −
0 0 0
0 0 0

Block 3 Add the six star points plus 2 center points, fit the full second 
order model, estimate block effects.
−α  0  0
+α  0  0
 0 −α  0
 0 +α  0
 0  0 −α
 0  0 +α
 0  0  0
 0  0  0
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RESPONSE SURFACE METHODOLOGY ANALYSIS

After the experimental runs are conducted and the responses 
are measured, the model is fitted to the data by a regression 
analysis procedure in a statistical package, and two of these 
are listed as follows.

MINITAB® statistical software package (Minitab, Inc., State 
College, Pennsylvania, U.S.A.), release for Windows® (Microsoft 
Corp., Redmond, Washington, U.S.A.).

DESIGN EXPERT® statistical package (Stat-Ease, Inc., 
Minneapolis, Minnesota, U.S.A.).

Various graphs are available to aid in the interpretation 
of the results. The end product of an experiment design is a 
report listing the factor ranges necessary to produce, within 
statistical uncertainty, the required response levels to attain 
the desired product quality.

The RSM procedure will now be illustrated through three 
examples of increasing complexity.

Case Study 1––Blending for Product Uniformity: 
A Single-Factor Response Surface Methodology

Consider a blending study to determine the optimum blending 
time of a mixture of solid particulates or powders. An active 
pharmaceutical ingredient (API) was blended with three 

Table 6 The Three-Factor Box–Behnken Design
Run X1 X2 X3

1 − − 0
2 + − 0
3 − + 0
4 + + 0
5 − 0 −
6 − 0 +
7 + 0 −
8 + 0 +
9 0 − −
10 0 + −
11 0 − +
12 0 + +
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excipients in a ribbon blender. The study was conducted by 
thief sampling at six different locations in the blender after a 
given blending time, measuring the content of the drug sub-
stance at each sampling point, and calculating the variation 
in API assay of the six samples as percent relative standard 
deviation (% RSD). The response was blend uniformity and 
the factor was blending time. The study was conducted for sev-
eral blending times, ranging from 15 to 60 minutes. Two 
empirical models could be used to describe the relationship, a 
first-order polynomial or straight-line model and the second-
order polynomial or parabolic model. The data for this study 
and the fitted values are listed in Table 7.

Plots of the data and fitted models are shown in Figure 3. 
The response “surface” in this case is a one-dimensional 
object—a line or a curve—and is easy to interpret graphically.

The expressions for the two candidate empirical models 
are:

First order: Y = b0 + b1X 
Second order: Y = b0 + b1X + b11X

2

The coefficients of the model terms are the intercept b0, the 
slope b1, and the curvature b11. These are readily estimated 
by a statistical regression analysis package. The intercept 

Table 7 Blend Uniformity Study

Blend Uniformity (% RSD)

Time (min)
Observed

data
1st order

fit
2nd order

fit

15 5.8 5.6 5.7
20 4.5 4.7 4.5
25 3.6 3.8 3.6
30 2.7 2.9 2.9
35 2.2 2.0 2.4
40 2.2 2.2
45 2.4 2.2
50 2.6 2.5
55 3.1 3.0
60 3.5 3.7

Abbreviation: RSD, relative standard deviation.
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coefficient is the predicted response value when the factor 
level is zero, and may not be interpretable if the factor-level 
range is far removed from zero. The slope coefficient is the 
increase in the response level attributed to a unit increase in 
the factor level when the relationship between Y and X is 
first order.

The curvature coefficient, although not readily interpre-
table numerically, can be used to estimate the factor level that 
gives the maximum or minimum value of the response, and 
this occurs at the factor level value X = –b1 /2b11. (The maxi-
mum or minimum response occurs when the first derivative is 
equal to zero, that is, dY/dX = b1 + 2b11X = 0, and solving for X 
gives the desired value.) The sign of the curvature coefficient 
is positive when the response goes through a response 
 minimum and is negative for a response maximum. A handy 
mnemonic is when b11 is positive, the curve is a “smile,” and 
when negative, a “frown.”

For the data in the blending study, the estimated first-
order model was Y = 8.26 – 0.18X over the 15- to 35-minute 
range. In this range, the RSD decreased by 0.18% per minute 
of blending time. The intercept value of 8.26% RSD predicted 
the RSD at zero minutes blend time, which was certainly not 
of interest in this type of study. In addition, the model was not 
at all predictive of the results past 35 minutes.

The second-order model was estimated with the output 
listed in Table 8, and the resulting model equation was 
Y = 10.7 − 0.407X + 0.00483X2. The predicted minimum RSD 

Figure 3 Blending study.
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was attained at X = −(−0.407)/(2 × 0.00483) = 42.1 minutes. 
The end result of this study might state that the blending 
time must be maintained in the range of 37 to 47 minutes 
in order to obtain the maximum uniformity (minimum 
RSD).

Case Study 2––Granulation Milling for Particle-Size 
Control: A Two-Factor Response Surface Methodology

This study dealt with a granulation milling experiment with 
the two factors being impeller speed and solvent addition time. 
The response was the product yield after screening, the 
 desirable material passing through a 40-mesh screen and 
retained on a 100-mesh screen. The material passing through 
a 100-mesh screen, or “fines,” and the material retained on a 
40-mesh screen, or “overs,” were discarded or reworked and 
represented additional processing costs at best or product loss 
at worst. The limiting factor levels chosen for this study were 
120 to 180 rpm for the impeller speed and 65 to 85 g per 
minute for the solvent addition rate.

The 11-run design and resulting data are listed in 
Table 9. The first four runs are the imbedded 22 factorial 
points, the next four runs are the axial or star points, and the 
last three runs are the center points. The factor levels are 
listed in the actual units (“uncoded” form) and in coded units. 
The value of α was set to 1 to minimize the number of factor 
levels required, instead of conducting a rotatable design 

Table 8 Regression Analysis Output for Blender Studya

Predictor Coef. SE Coef. T P

The regression equation is RSD = 10.7 − 0.407 Time + 0.00483 Time2

Constant 10.7145 0.3832 27.96 0.000
Time −0.40662 0.02237 −18.18 0.000
Time2 0.0048333 0.0002941 16.43 0.000
S = 0.1689 R-Sq = 98.3% R-Sq(adj) = 97.8%
aRegression Analysis: RSD vs. Time, Time2

Abbreviations: Coef, estimated coefficient; P, p-value; RSD, relative standard devia-
tion; SE Coef, standard error of estimated coefficient; T, t statistic.
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where five levels of each factor would be required (−α, −1, 0, 1, 
and α in coded form).

The three empirical models could be used as response 
surfaces, and from the simplest to the most complex, these 
were the additive (first-order) model, the interactive model, 
and the full-quadratic (second-order) model. The additive and 
interactive models could be considered as special cases of the 
full-quadratic model.

The additive model in two factors was Y = b0 + b1X1 + b2X2 
and implied that the two factors influenced the response inde-
pendently and in a magnitude proportional to the two slope 
coefficients, b1 and b2. The response surface could be depicted 
as a plane, or as a series of straight line contours. Suppose the 
effects of impeller speed (X1) and solvent rate (X2) each increased 
the percent fines within the experimental range under conside-
ration, with an estimated model Y = −67 + 0.17X1 + 0.8X2, as 
computed from the four factorial runs. The resulting contour 
plot is shown in Figure 4. The contours of constant level of per-
cent fines are drawn over the two-dimensional factor space. 
The contours are shown for 10%, 15%, 20%, 25%, and 30% 
fines. Note that the fines steadily increase with both the 
 impeller speed and the solvent addition rate, and the maximum  

Table 9 Granulation Milling Study Design and Results
Factors and levels Responses

Impeller 
speed 
(rpm)

Addition 
rate 

(gpm)

Impeller 
speed 
coded

Addition 
rate 

coded
Fines % 

w/w
Overs % 

w/w
Yield % 

w/w

120 65 −1 −1 0 12 88
180 65 1 −1 20 0 80
120 85 −1 1 26 14 60
180 85 1 1 26 14 60
120 75 −1 0 13 15 72
180 75 1 0 23 9 68
150 65 0 −1 10 4 86
150 85 0 1 26 12 62
150 75 0 0 18 10 72
150 75 0 0 17 9 74
150 75 0 0 19 11 70
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value from this prediction occurs at the 180-rpm impeller speed 
and the 85-g per minute addition rate.

Another graphical aid is the three-dimensional plot 
shown in Figure 5, where the response surface is depicted as 
a grid of points representing a tilted flat plane hovering above 
the plane of the factor space. The contours are shown below 
the response surface on the plane representing the factor 
space. Both of these plots were generated by the Design 
Expert statistical package.

The interactive model in two factors is Y = b0 + b1X1 + b2
X2 + b12X1X2 with a fourth term that indicates that the 
response is also being influenced by a multiplicative combi-
nation of the two factors. If the interaction coefficient b12 is 
positive, then the interaction is said to be synergistic, and 
the effect of the two factors on the response is greater than the 

Figure 4 An additive model contour plot for fines from the milling 
study.
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sum of the two independent linear effects of the two factors. 
A negative  coefficient indicates a depressive multiplicative 
effect. The three-dimensional plot in Figure 6 corresponds 
to the fitted model Y = −254.5 + 1.42X1 + 3.3X2 − 0.017X1X2, 
again calculated from the results of the four factorial points. 
The response  surface is no longer flat but now droops toward 
low values of the two factors and flattens toward the higher 
values of the two factors. The contours are a series of 
curves.

The full quadratic model in two factors was, Y =  b 0  +  b 1  X 1  +  
b 2  X 2 +  b 11  X 1  

2  +  b 12  X 1  X 2  +  b 22   X 2  
2 , which has two added second order, 

or curvature terms added for each of the two factors. This 
model is the most versatile for response surface modeling.

The regression output is shown in Table 10A for percent 
yield, Table 10B for percent fines, and Table 10C for percent 
overs. The analysis of variance part of each table indicated 
that the linear and interaction terms were statistically 

Figure 5 An additive model three-dimensional response surface 
plot for fines from the milling study.
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 significant for all three responses, but the quadratic terms 
were significant only for yield and overs. The regression model 
coefficients were calculated in two ways––the first based on 
coded factor levels and the second based on uncoded factor 
levels. The estimates based on coded units are known as 
 standardized coefficients. Here the X variables are standar-
dized by first centering (subtracting off the mean) and 
then scaling (dividing by the range) before fitting the qua-
dratic model. Centering reduces the correlation among the 
intercept, linear, and  quadratic terms. Scaling allows for 
better compari son of the magnitude of the linear effects 
among factors, as all uncoded factor levels are not on the same 
size scale.

The contour plot for yield, shown in Figure 7, indicated 
that the highest yields (greater than 85%) occurred at low to 
mid impeller speeds, or 120 to 150 rpm, and the lowest addi-
tion rate of 65 g per minute. Although the principal response 

Figure 6 An interactive model three-dimensional response 
surface plot for fines in the milling study.
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was yield, some additional process understanding could be 
obtained by evaluating the fines and overs as well, as was done 
in Figures 8 and 9. The predicted amount of fines (Fig. 8) was 
less than 5% at impeller speeds of 120 to 135 rpm and addition 

Table 10A Regression Analysis Output for Milling Study 
Percent Yield Response: Response Surface Regression—Yield vs. 
Impeller, AddRate

Analysis of variance for yield

Source df Seq SS Adj SS Adj MS F P

Regression 5 920.000 920.000 184.000 115.00 0.000
Linear 2 888.000 888.000 444.000 277.50 0.000
Square 2 16.000 16.000 8.000 5.00 0.064
Interaction 1 16.000 16.000 16.000 10.00 0.025
Residual error 5 8.000 8.000 1.600
Lack-of-Fit 3 0.000 0.000 0.000 0.00 1.000
Pure error 2 8.000 8.000 4.000
Total 10 928.000

Estimated regression coefficients for yield: coded units

Term Coef. SE Coef. T P

Constant 72.00 0.6489 110.959 0.000
Impeller −2.00 0.5164 −3.873 0.012
AddRate −12.00 0.5164 −23.238 0.000
Impeller*Impeller −2.00 0.7947 −2.517 0.053
AddRate*AddRate 2.00 0.7947 2.517 0.053
Impeller*AddRate 2.00 0.6325 3.162 0.025
S = 1.265 R-Sq = 99.1% 1% R-Sq (adj) = 98.3%

Estimated regression coefficients for 
yield: uncoded units

Term Coef.

Constant 309.500
Impeller 0.100000
AddRate −5.20000
Impeller*Impeller −0.00222222
AddRate*AddRate 0.0200000
Impeller*AddRate 0.00666667

Abbreviations: Adj MS, adjusted mean square; Adj SS, adjusted sum of squares; Coef., 
estimated coefficient; df, degrees of freedom; F, f statistic; P, p-value; R-Sq, multiple 
coefficient of determination; R-Sq(adj), adjusted multiple coefficient of determina-
tion; S, residual standard deviation; SE Coef., standard error of estimated coefficient; 
Seq SS, sequential sum of squares; T, t statistic. 
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rates of 65 to 68 g per minute. The predicted amount of overs 
(Fig. 9) was lowest at the higher impeller speeds, 160–180 rpm, 
and again low addition rates. This  analysis showed a tradeoff 
between high production of fines at high impeller speeds and 

Table 10B Regression Analysis Output for Milling Study Percent 
Fines Response: Response Surface Regression—Fines vs. Impeller, 
AddRate

Analysis of variance for fines

Source df Seq SS Adj SS Adj MS F P

Regression 5 634.000 634.000 126.800 317.00 0.000
Linear 2 534.000 534.000 267.000 667.50 0.000
Square 2 0.000 0.000 0.000 0.00 1.000
Interaction 1 100.000 100.000 100.000 250.00 0.000
Residual error 5 2.000 2.000 0.400
Lack-of-fit 3 0.000 0.000 0.000 0.00 1.000
Pure error 2 2.000 2.000 1.000
Total 10 636.000

Estimated regression coefficients for fines: coded units

Term Coef. SE Coef. T P

Constant 18.000 0.3244 55.480 0.000
Impeller 5.000 0.2582 19.365 0.000
AddRate 8.000 0.2582 30.984 0.000
Impeller*Impeller 0.000 0.3974 0.000 1.000
AddRate*AddRate −0.000 0.3974 −0.000 1.000
Impeller*AddRate −5.000 0.3162 −15.811 0.000
S = 0.6325 R-Sq = 99.7% R-Sq(adj) = 99.4%

Estimated regression coefficients for 
fines: uncoded units

Term Coef.

Constant −254.500
Impeller 1.41667
AddRate 3.30000
Impeller*Impeller 4.548643E-19
AddRate*AddRate −2.26224E-18
Impeller*AddRate −0.0166667

Abbreviations: Adj MS, adjusted mean square; Adj SS, adjusted sum of squares; Coef., 
estimated coefficient; df, degrees of freedom; F, f statistic; P, p-value; R-Sq, multiple 
coefficient of determination; R-Sq(adj), adjusted multiple coefficient of determination; 
S, residual standard deviation; SE Coef., standard error of estimated coefficient; Seq 
SS, sequential sum of squares; T, t statistic.
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high production of overs at low impeller speeds, but the increase 
in fines appeared to be the dominating influence on yield.

The overall conclusion is to keep low addition rates, 
 possibly investigating lower addition rates, with low to medium 
impeller speeds in order to obtain maximum yields.

Table 10C Regression Analysis Output for Milling Study 
Percent Overs Response: Response Surface Regression—Overs vs. 
Impeller, AddRate

Analysis of variance for overs

Source df Seq SS Adj SS Adj MS F P

Regression 5 202.000 202.000 40.4000 101.00 0.000
Linear 2 150.000 150.000 75.0000 187.50 0.000
Square 2 16.000 16.000 8.0000 20.00 0.004
Interaction 1 36.000 36.000 36.0000 90.00 0.000
Residual error 5 2.000 2.000 0.4000
Lack-of-fit 3 −0.000 −0.000 −0.0000 0.00 1.000
Pure error 2 2.000 2.000 1.0000
Total 10 204.000

Estimated regression coefficients for overs: coded units

Term Coef. SE Coef. T P

Constant 10.000 0.3244 30.822 0.000
Impeller −3.000 0.2582 −11.619 0.000
AddRate 4.000 0.2582 15.492 0.000
Impeller*Impeller 2.000 0.3974 5.033 0.004
AddRate*AddRate −2.000 0.3974 −5.033 0.004
Impeller*AddRate 3.000 0.3162 9.487 0.000
S = 0.6325 R-Sq = 99.0% R-Sq(adj) = 98.0%

Estimated regression coefficients for 
overs: uncoded units

Term Coef.

Constant 45.0000
Impeller −1.51667
AddRate 1.90000
Impeller*Impeller 0.00222222
AddRate*AddRate −0.0200000
Impeller*AddRate 0.0100000

Abbreviations: Adj MS, adjusted mean square; Adj SS, adjusted sum of squares; Coef., 
estimated coefficient; df, degrees of freedom; F, f statistic; P, p-value; R-Sq, multiple 
coefficient of determination; R-Sq(adj), adjusted multiple coefficient of determina-
tion; S, residual standard deviation; SE Coef., standard error of estimated coefficient; 
Seq SS, sequential sum of squares; T, t statistic.
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Figure 7 Granulation milling study––contour plot for yield.

Figure 8 Granulation milling study––contour plot for fines.
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Table 11 Design and Results for the Coating Study

Block

Spray 
rate 

(g/min)

Product 
temp 
(°C)

Atomiz. 
press. 
(Bar)

Spray 
rate 

coded

Product 
temp. 
coded

Atomiz. 
press. 
coded

Dissoln. 
(%)

Resid. 
solv. 

(ppm)

1 650 54 2.3 −1 −1 −1 71.20 282.6
1 1050 54 3.5 1 −1 1 57.23 884.1
1 650 60 3.5 −1 1 1 87.32 353.5
1 1050 60 2.3 1 1 −1 54.78 475.4
1 850 57 2.9 0 0 0 71.10 490.0
1 850 57 2.9 0 0 0 68.91 488.4
2 650 54 3.5 −1 −1 1 60.70 225.9
2 1050 54 2.3 1 −1 −1 58.22 1030.7
2 650 60 2.3 −1 1 −1 89.74 356.7
2 1050 60 3.5 1 1 1 61.27 445.8
2 850 57 2.9 0 0 0 69.31 494.5
2 850 57 2.9 0 0 0 68.31 486.0
3 850 57 1.9 0 0 −1.682 68.29 529.6
3 850 57 3.9 0 0 1.682 65.09 438.2
3 514 57 2.9 −1.682 0 0 79.31 205.6
3 1186 57 2.9 1.682 0 0 46.55 848.2
3 850 52 2.9 0 −1.682 0 60.55 681.9
3 850 62 2.9 0 1.682 0 79.39 358.9
3 850 57 2.9 0 0 0 72.30 505.0
3 850 57 2.9 0 0 0 73.24 487.0

Figure 9 Granulation milling study––contour plot for overs.
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Case Study 3––Dissolution and Residual Solvent Control 
in Tablet Coating: A Three-Factor Response Surface 
Methodology

A tablet-coating investigation was conducted to evaluate the 
effect of spray rate, inlet air temperature, and atomization air 
pressure on the six-hour dissolution and residual solvent 
levels of coated tablets. The goal was to find conditions which 
maximized the dissolution and minimized the residual solvents  
of the coated tablets.

This study illustrated the use of a three-factor CCD com-
posed of a 23 factorial design (eight runs), six center points, and 
six star points, conducted sequentially in three blocks. The seq-
uen tial design strategy for the 20-run design was summarized in 
Table 5. As previously discussed, the advantage of this sequen-
tial strategy is that an evaluation of the data can be conducted 
after each block, which can lead to alteration of factor levels, if 
necessary, without  committing to the full design at the outset. 
The full design is given in Table 11, listing the factor levels (actual 
and coded units) and the resulting observed responses.

The regression analysis output from MINITAB is listed 
in Tables 12A and 12B for the two responses, dissolution and 
 solvent, respectively. The regression coefficients are listed for 
coded and uncoded levels of the factors. The magnitudes of the 
coded coefficients are more comparable than the uncoded coef-
ficients as the scales of the three factors were standardized to 
a common scale to make the scales of the coded coefficients 
equal in magnitude.

The contour plots are shown in Figures 10 and 11. The 
response surface was a three-dimensional hypersurface in a 
four-dimensional space, which was hardly able to be plotted. 
Instead, the response surface for spray rate and air 
 temperature—the two dominating factors—was “sliced” at 
three levels of the third factor, atomizing air pressure. These 
were the low, mid, and high factorial levels of 2.3, 2.9, and 3.5 
atmospheres (bar) for air pressure.

For dissolution, the maximum values occurred at low 
spray rates and high temperatures across all values of air 
pressure. Comparison of the three contour plots across levels 
of air pressure showed little effect of air pressure on 
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Table 12A Regression Analysis Output for Coating Study 
Dissolution Response: Response Surface Regression—Dissol vs. 
AirPress, SprayRate, AirTemp

Estimated regression coefficients for dissol: 
using data in coded units

Term Coef. SE Coef. T P

Constant 70.486 1.584 44.487 0.000
Block1 0.231 1.267 0.182 0.860
Block 2 −0.268 1.267 −0.211 0.838
AirPress −0.937 1.050 −0.892 0.398
SprayRat −7.070 1.050 −6.731 0.000
AirTemp 3.913 1.050 3.725 0.006
AirPress*AirPress −1.090 1.023 −1.066 0.318
SprayRat*SprayRat -2.419 1.023 −2.365 0.046
AirTemp*AirTemp 0.069 1.023 0.068 0.948
AirPress*SprayRat 2.303 1.373 1.678 0.132
AirPress*AirTemp 1.945 1.373 1.417 0.194
SprayRat*AirTemp −4.070 1.373 −2.965 0.018
S = 3.882 R−Sq = 90.9% R−Sq(adj) = 78.4%

(Continued)

Analysis of variance for dissol

Source df Seq SS Adj SS Adj MS F P

Blocks 2 0.78 0.760 0.380 0.03 0.975
Regression 9 1206.01 1206.009 134.001 8.89 0.003
Linear 3 903.85 903.847 301.282 19.99 0.000
Square 3 96.97 96.966 32.322 2.14 0.173
Interaction 3 205.20 205.195 68.398 4.54 0.039
Residual error 8 120.56 120.563 15.070
Lack−of−fit 5 117.22 117.223 23.445 21.06 0.015
Pure error 3 3.34 3.340 1.113
Total 19 1327.35

Estimated regression coefficients for dissol: 
using data in uncoded units

Term Coef.

Constant −116.120
Block 1 0.230658
Block 2 −0.267675
AirPress −61.9031
SprayRat 0.398463
AirTemp 3.05722
AirPress*AirPress −3.02761
SprayRat*SprayRat −6.04743E−05
AirTemp*AirTemp 0.00771434
AirPress*SprayRat 0.0191875
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Table 12B Regression Analysis Output for Coating Study 
Solvent Response: Response Surface Regression—Solvent vs. 
AirPress, SprayRate, AirTemp

Estimated regression coefficients for solvent: using data in coded units

Term Coef. SE Coef. T P

Constant 491.8 4.101 119.925 0.000
Block 1 −7.1 3.279 −2.175 0.061
Block 2 3.8 3.279 1.159 0.280
AirPress −28.5 2.719 −10.498 0.000
SprayRat 197.5 2.719 72.661 0.000
AirTemp −97.8 2.719 −35.956 0.000
AirPress*AirPress −3.9 2.647 −1.461 0.182
SprayRat*SprayRat 11.3 2.647 4.280 0.003
AirTemp*AirTemp 9.0 2.647 3.412 0.009
AirPress*SprayRat −14.5 3.552 −4.092 0.003
AirPress*AirTemp 21.3 3.552 5.999 0.000
SprayRat*AirTemp −149.4 3.552 −42.059 0.000
S = 10.05 R-Sq = 99.9% R-Sq(adj) = 99.8%

Analysis of variance for solvent

(Continued)

Source df Seq SS Adj SS Adj MS F P

Blocks 2 513 478 239 2.37 0.156
Regression 9 861,819 861,819 95,758 948.49 0.000
Linear 3 674,664 674,664 224,888 2E+03 0.000
Square 3 3238 3238 1079 10.69 0.004
Interaction 3 183,917 183,917 61,306 607.24 0.000
Residual error 8 808 808 101
Lack-of-fit 5 608 608 122 1.83 0.328
Pure error 3 199 199 66
Total 19 863,139

Table 12A Regression Analysis Output for Coating Study 
Dissolution Response: Response Surface Regression—Dissol vs. 
AirPress, SprayRate, AirTemp (Continued)

Estimated regression coefficients for dissol: 
using data in coded units

Term Coef.

AirPress*AirTemp 1.08056
SprayRat*AirTemp −0.00678333

Abbreviations: Adj MS, adjusted mean square; Adj SS, adjusted sum of squares; Coef., 
estimated coefficient; df, degrees of freedom; F, f statistic; P, p-value; R-Sq, multiple 
coefficient of determination; R-Sq(adj), adjusted multiple coefficient of determina-
tion; S, residual standard deviation; SE Coef., standard error of estimated coefficient; 
Seq SS, sequential sum of squares; T, t statistic.
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dissolution.  For residual solvents, the minimum values 
occurred at low spray rates and low air temperatures, with 
the air temperature interacting with the air pressure. High 
air pressure gave lower solvent levels at the low air tempera-
tures. Thus, there would be a tradeoff of higher dissolution 
against lower residual  solvent.

When there are a larger number of responses, the graph-
ical approach to analysis with regard to meeting specifica-
tions for all responses can be daunting, if not impossible. An 
alternative approach is to use a systematic grid search over 
the factor space. At every point on the grid, each response is 
examined for conformance to the specifications (yes or no). A 
grid point that meets specifications for all responses is termed 
a “hit.” Finding the minimum cost “hit” is the objective. If 
there are no “hits,” then the specification windows must be 
relaxed, if possible.

Table 12B Regression Analysis Output for Coating Study 
Solvent Response: Response Surface Regression—Solvent vs. 
AirPress, SprayRate, AirTemp (Continued)

Estimated regression coefficients for 
solvent: using data in uncoded units

Term Coef.

Constant −5383.33
Block 1 −7.13220
Block 2 3.80113
AirPress −557.182
SprayRat 15.0517
AirTemp 30.3145
AirPress*AirPress −10.7431
SprayRat*SprayRat 0.000283289
AirTemp*AirTemp 1.00378
AirPress*SprayRat −0.121146
AirPress*AirTemp 11.8403
SprayRat*AirTemp −0.249021

Abbreviations: Adj MS, adjusted mean square; Adj SS, adjusted sum of squares; Coef., 
estimated coefficient; df, degrees of freedom; F, f statistic; P, p-value; R-Sq, multiple 
coefficient of determination; R-Sq(adj), adjusted multiple coefficient of determination; 
S, residual standard deviation; SE Coef., standard error of estimated coefficient; Seq 
SS, sequential sum of squares; T, t statistic.
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In summary, RSM is a useful technique for finding the 
optimum conditions for one or more responses over up to about 
five factors. The types of experimental designs often used for 
RSM are the CCD and Box–Behnken designs. The response 
surface can be well-described by a second-order polynomial 
model, and thus can be used to readily find the optimum 
 conditions for a single response or to perform a tradeoff 
 analysis among two or more responses.

Figure 10 (A) Tablet coating study––contour plot for dissolution 
spray rate and air  temperature. Atomization air pressure, 2.3 Bar. 
(B) Tablet coating study––contour plot for dissolution spray rate 
and air temperature. Atomization air pressure, 2.9 Bar. (C) Tablet 
coating study––contour plot for dissolution spray rate and air tem-
perature. Atomization air pressure 3.5 Bar.
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INTRODUCTION

Process validation is “establishing documented evidence which 
provides a high degree of assurance that a specific process will 
consistently produce a product meeting its predetermined 
specifications and quality attributes” (1). Being able to  validate 
a process first requires that a process be developed that meets 
the customer requirements. This development process requires 
taking the external customer requirements and translating 
them into internal requirements for the manufacturing 
parameters, materials, procedures, and environment that 
ensure that the customer requirements are met. It also 
requires establishing controls to ensure that these internal 
requirements continue to be met.

Designed experiments are a key tool for performing this 
specification  translation process and helping to establish such 
controls. However, designed experiments are not the only tool 
required to accomplish this task. We will also explore other 
tools, such as tolerance analysis, robust design, capability 
studies, and Failure Modes and Effects Analysis (FMEA), to 
see how to combine these tools into an effective system for 
validation.

The ideal is to set operating windows on the internal 
parameters, which ensure that the external requirements are 
met. Achieving this ideal requires  identifying all the internal 
parameters affecting the external requirements and that 
these internal parameters be adequately controlled. This is 
often not the case.
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For example, having validated an injection molding pro-
cess and specifying settings for all the machine parameters, 
the operator may find themselves in a  predicament. A batch of 
resin has been received with a higher melt index. In the past, 
the operator would have increased the barrel temperature to 
compensate. However, as a part of validation, the tempera-
ture range has been restricted so that they can no longer make 
this adjustment. They go to their supervisor and ask: “What 
do you want me to do? Make good product by running outside 
the validated  operating window or run inside the validated 
operating window and make bad product?” The problem is 
that not all the key parameters were included when  setting 
the operating windows. Besides machine parameters, operat-
ing windows need to be set on material properties, environ-
mental factors and operator effects. However, setting an 
operating window for the melt index of the material does not 
necessarily solve the problem if the suppliers cannot meet this 
operating window. This might require purchasing a more 
expensive grade of material, pricing the product out of the 
market. This chapter addresses incorporating adjustment 
 mechanisms within the framework of a process validation.

As a second example, latex, used to produce latex gloves, 
is a natural ingredient produced from tree sap, which varies 
in consistency with weather conditions and geographic loca-
tion. Each batch of latex must be analyzed to determine its 
properties and then adjusted to get a more consistent perfor-
mance. This is an example of a feed-forward control mecha-
nism. One cannot set an operating window on the amount of 
solids added because it depends on the batch of latex. One 
cannot set an operating window on the percent solids in the 
latex  initially because nature cannot be controlled. However, 
a control mechanism can still be established that ensures 
that the product will consistently meet requirements. Again 
adjustment mechanisms are required.

This chapter focuses on validating control plans. The 
Global Harmonization Task Force (GHTF) guideline (2) states:

●  “One output of process validation is the development 
of a control plan”;
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●  “The final phase of validation requires demonstrating 
this control plan works.”

The control plans considered include feed-forward and 
feedback mechanisms. Designed experiments can provide the 
detailed understanding required to establish more complex 
control mechanisms where they are needed.

THE CONTROL PLAN

A control plan is the sum of the procedures and equipment 
used to ensure that the internal requirements are met. It 
includes control charts, sampling plans, 100% inspection, feed-
forward/feedback mechanisms, and mistake-proofing tech-
niques/devices. Some items may be performed by equipment 
like automatic controllers, and some are performed by opera-
tors and checkers. There may not be a single document called 
a control plan. Instead, these controls might be spread across 
a number of documents including a statistical process control 
plan, an inspection plan, an operator manual, and various 
other standard operating procedure and specifications.

This control plan is an integral part of the process. One 
cannot validate a process without first specifying how the 
process is to be operated. As a part of validation, we want to 
prove that the control plan works.

The control plan is designed to prevent defects, that is, 
product that does not meet its “predetermined specifications 
and quality attributes.” Some defects result from errors. For 
example, an operator might forget to insert a part, might 
incorrectly load a part into a welder or perform an operation 
they were not supposed to. The tool for addressing this type of 
defect is mistake proofing. There are several mistake-proofing 
strategies, including:

●  Elimination––make it impossible for the defect to 
occur;

●  Facilitation––make it easier to do it right;
●  Replacement––replace less reliable processes with 

more reliable processes;
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●  Flagging––make mistakes more visible so they are 
detected and removed;

●  Redundant––add redundancy so a single mistake does 
not cause a product  to fail;

●  Fail-safe––lessen impact of mistake should it occur.

Elimination is generally the preferred strategy, but not 
always possible. Designed experiments can sometimes be used 
as a part of the facilitation strategy to identify conditions that 
affect the rate of mistakes and to identify the conditions that 
minimize the incidence of mistakes.

Before mistake proofing can be applied, potential mis-
takes must first be identified. FMEA can be used for this pur-
pose. It identifies different failure modes along with their 
potential causes and consequences. For each potential failure 
mode, a risk evaluation is performed based on the likelihood 
of a defect to occur, the likelihood of it being detected, and the 
severity of its consequences. One of the columns in an FMEA 
is titled “Control Plan.” This column must be filled out before 
performing the risk assessment. Both the likelihood of occur-
rence and likelihood of detection are affected by the controls 
that are currently in place.

FMEA evaluate the current control plan and identify 
high-risk areas that require additional controls. As high-risk 
items are identified and dealt with, the control plan evolves. 
Once the risks are all at acceptable levels, the control plan is 
believed adequate and it is time to proceed with the worst-
case and performance qualification (PQ) testing phases of 
validation.

Some of the high-risk items can be dealt with by mistake 
proofing. However, other failure modes will be found that are 
not mistakes but, instead, centering and variation issues. For 
example, a seal could leak due to inadequate sealing, which is 
affected by dozens of factors, including seal time, seal tempera-
ture, pressure, material thickness, material temperature, room 
temperature, and so on. Resolving this issue requires identify-
ing the different factors affecting seal strength, establishing 
targets and operating windows for these factors, and establish-
ing controls to maintain these factors inside their respective 
operating windows. It might also require establishing more 
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complex controls like feedback and feed-forward. This type of 
situation is the topic of the next section.

THE SPECIFICATION TRANSLATION PROCESS

For measurable characteristics, the process of translating cus-
tomer requirements into internal requirements can be pic-
tured in terms of an input/output model. Take as an example 
the customer requirement that the dosage of a vial of drug 
contain ±15% of the labeled dosage of 10 mg. Dosage is the 
external requirement and will be referred to as an output 
 variable. A vial’s dosage depends on the fill volume of the vial 
and the concentration of the solution. These are the internal 
requirements and will be referred to as input variables or fac-
tors. The input/output (I/O) system is shown in Figure 1.

Translating specifications for external requirements into 
internal requirements requires the following five items of 
information:

1. Identify the critical output variables;
2. Develop measurements for these output variables 

and establish specifications based on customer need;
3. Identify the critical input variables affecting the 

outputs;
4. Model the effect of the critical inputs on the critical 

outputs;
5. Determine manufacturing and supplier capabilities 

to control the critical  input variables.

The goal is to set specifications on the critical inputs that 
ensure that the output specifications are met and can be met 

Drug Dosage

I/O

SYSTEM

V : Volume 

C : Concentration

D : Dosage 

Figure 1 Input/output system for drug dosage.
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in manufacturing. While gathering all the aforementioned 
information takes time and resources, one must ask how a 
design can be completed if any of these items are missing. 
How can one design if one does not know the critical outputs; 
one does not know what the requirements are; one does not 
know the critical inputs/factors that affect the output; one 
does not know how the inputs affect the output; one does not 
understand the ability to control the critical inputs. With this 
knowledge, the design can be optimized. Without any one of 
these items, the design process degenerates into one of trial 
and error  resulting in marginal performance and manufactur-
ability issues.

Different tools are required for each item. Items 1 and 2 
require the  customer’s input (voice of the customer). The tools 
include data-gathering tools, like focus groups and surveys, 
and statistical analysis tools, like conjoint and regression 
analysis. Measurements may have to be developed requiring 
the use of gage studies.

Having identified the critical outputs and their specifica-
tions, we must determine the critical inputs (item 3). A type of 
design of experiment (DOE), called a screening experiment 
(fractional factorial), can be used to efficiently sort through a 
large number of potential inputs to identify those that are 
critical. A case study is presented illustrating the use of 
screening experiments.

Subsequently, we need to understand how the critical 
inputs affect the  critical outputs (item 4). A second type of 
designed experiment, called response surface methodology 
(RSM), is used to accomplish this task. Sometimes we are for-
tunate and know the equation in advance. For example, the 
equation for dosage above is D = V × C. However, when the 
equation is not known, a DOE can be used to empirically fit a 
model. A response surface study is also presented as part of 
this case study.

There is more than one way to set the specifications for 
the critical inputs. Tightening the specification of one input 
variable may allow us to open up the specification on another. 
How do we decide which set of specifications are best? The 
answer is based on the ability to meet the specifications. 
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This requires the gathering of capability data and life-testing 
data from the plants and suppliers to determine which speci-
fications can be easily met (item 5, voice of manufacturing).

Having gathered all this information, we are not done. To 
come up with the final set of specifications, tolerance analysis 
and design optimization methods are required. In optimizing 
the design, care should be taken to make the design robust to 
the variation of the inputs to help open up the tolerances for 
the inputs. Hopefully, the result will be a set of specifications 
for the inputs that ensure the output specifications are met 
and are manufacturable. Sometimes, specifications for the 
inputs must be tighter than desired, requiring alternate sup-
pliers and processes or 100% inspection. Once the specifica-
tions for the critical inputs are set, the last step is to specify 
the controls required to ensure that these specifications con-
tinue to be met.

HEAT SEALER CASE STUDY

To illustrate the use of designed experiments in this process, 
a case study is presented involving a packaging sealer (3). 
Designed experiments in conjunction with other tools are used 
to create a control plan that is then validated. The DOE results 
are also used to identify worst-case conditions for worst-case 
testing, and to help select sample sizes for worst-case and 
final PQ testing.

The case study will be limited to forming the top seal of a 
plastic pouch used to protect the product. This pouch serves as 
both a moisture and sterility barrier, so it is considered critical 
to the safety of the product inside. The seal is torn open by the 
customer to remove the product. There is both a lower limit on 
strength to ensure seal integrity and an upper limit on strength 
to ensure that the customer can comfortably open the bag.

Two critical outputs have been identified. The first is seal 
strength and the second is visible discoloration of the seal 
called “Seal Burn.” A measurement method has been devel-
oped for measuring seal strength. It involves cutting a 1-inch 
wide strip of the seal and measuring the force required to pull 



178 Taylor

the seal apart in a tensile tester. Further testing with the cus-
tomer has identified the upper specification limit should be set 
to 32 lb. Accelerated life testing using elevated temperatures 
and  shaking the pouch identified a lower limit of 20 lb. This 
results in a specification  for seal strength of 26 ± 6 lb. Limit 
samples have also been established based on customer input 
for the amount of discoloration allowed before a bag is consid-
ered to have seal burn. A pass/fail characteristic like this is 
referred to as attribute data. This completes items 1 and 2.

The next step is to identify the critical inputs affecting 
seal strength and seal burn (item 3). This might start with 
a brainstorming session with the operators and engineers 
to identify the possible inputs. It should also involve check-
ing with the equipment and material vendors and review-
ing similar validations. Based on the aforementioned, the 
following candidate input variables were identified:

HB  Hot bar temperature
CB  Cold bar temperature
DT  Dwell time
P  Pressure
CA  Cooling air pressure
TH  Material thickness
MT  Material temperature
RT  Room temperature

The heat sealer works by pinching the material to be 
sealed between two bars. The top bar, called the hot bar, pro-
vides heat to melt the plastic material, causing it to flow 
together to form the seal. The top bar also moves up and down 
to allow the material to be moved. The bottom bar is station-
ary and has cooling water running through it, allowing its 
temperature to be controlled.

When the top bar comes down to make contact with the 
material, it is lowered until it exerts a preset pressure on the 
material. It is then held there for a preset time. Before moving 
the material, cooling air is blown on the seal to facilitate 
hardening.

When determining input variables/factors to include, 
one must not restrict oneself to just machine parameters. 
Material properties, environmental factors, operator effects, 
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and procedures should also be considered. Otherwise, you 
might suffer the fate of the injection molding operator dis-
cussed earlier, unable to make compensating adjustments as 
unidentified critical inputs vary.

SCREENING EXPERIMENT

Just because an input might affect the output does not mean 
that it does. The next step is to reduce the larger list of candi-
date input variables into a smaller list of the critical inputs. A 
type of designed experiment called a screening experiment (3) 
can be used for this purpose. They are also commonly referred 
to as fractional factorial designs.

While the primary purpose of the screening experiment 
is to identify the critical inputs, a secondary goal is to deter-
mine what type of model to fit to the inputs when a follow-up 
response surface study is run. This will affect our choice of 
what design to run.

Having identified the inputs to include in the study, a 
range must be selected for each input. The ranges selected 
should be as wide as possible in order to  magnify the effects of 
the different variables. In Figure 2, it is shown how selecting  

Study Region

Small
Effect

Magnified
Effect

Normal Operating Range

Output 
Variable

Input  
Variable

Figure 2 Wide study regions magnify the effects of the inputs on 
the output.
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a study region five times the normal operating window used 
in production magnifies the effect of the input, making it 
easier to detect the effect. Production operating windows are 
generally selected to make the effect of the input small. To see 
these effects more clearly, broad study regions are needed. 
Studying the process over a region five times larger than the 
normal operating window is similar to putting your process 
under a microscope and flipping the lens to 5X power. Suddenly 
effects become visible that could not previously be seen.

The tendency is to set the study regions too narrow. 
However, it is also possible to go too far the other way. One 
does not want to set the study region so extreme that units are 
so poorly formed to prevent proper measurement or so extreme 
so as to cause damage to the equipment. Sometimes, small 
longitudinal studies are run first, adjusting a couple of the 
more important variables up and down to determine the limits 
of operability.

For the eight inputs, the following study regions were 
selected:

HB  Hot bar temperature  150–200°F
CB  Cold bar temperature  80–120°F
DT  Dwell time 0.5–1.0 seconds
P  Pressure 50–150 lbs
CA  Cooling air pressure 0–30 lbs
TH  Material thickness 14–15 mils
MT  Material temperature 70–110°F
RT  Room temperature 70–80°F

This provides the details needed to complete the design of 
the screening experiment. It was decided to run a screening 
experiment with the 22 trials shown in Table 1. For each of 
the 22 trials, the process is set to the specified conditions, and 
time is allowed for the machine to reach the set conditions and 
then a series of units are produced. For each trial, five units 
were randomly selected and tested for seal strength and 
50 units were inspected for burns. The resulting data is sum-
marized in Table 1. For each trial, the average and standard 
deviation of the five units is shown along with the number of 
units with burns.
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The trials shown in Table 1 started with a resolution IV 
fractional factorial design allowing independent estimates of 
all eight factors/inputs, unconfounded both with each other 
and with any two-way interactions. The base design consists 
of the 16 unique trials labeled 1–16. To the base design, two 
center points were added (C1 and C2). This allows the pres-
ence of quadratic effects to be detected. Finally, four trials 
selected at random were run a second time (R1, R8, R9, R13). 
This allows an estimate of the variation to be made for 
testing the effects so that one does not have to use a normal 
probability plot and rely on only a few effects being signifi-
cant. The total number of trials is 22 = 16 base trials + 2 
center points + 4 repeated trials. Table 1 shows the trials 
in standard order with the added trials at the end. The 
trials were actually run in the random order shown in the 
last column.

This design was selected, not only to determine the criti-
cal inputs, but also to help determine the model to fit to the 
data in a follow-up response surface study. Center points were 
added to determine if quadratic effects are needed in the 
model. Also of concern are interactions. There are 28 possible 
two-way interactions  that might exist between these eight 
inputs. These two-way interactions are  confounded together 
and are not estimable separately. However, the aforementioned  
design groups these interactions into seven distinct groups of 
four interactions each. Each of these groups can be tested for 
significance. As many of these groups are expected to be non-
significant, it may be possible to eliminate the majority of 
these interactions.

The result of the analysis of the seal strength averages 
is shown in Table 2. A term is considered significant if its 
p-value is 0.05 or below. Those terms that are significant are 
shown in italic. The p-value represents the probability the 
observed effect for the term could result from the noise in the 
data alone. For each significant effect, it can be stated 
with 95% confidence that the term’s effect is not zero. All 
the terms of a quadratic polynomial are shown in the effects 
table, including:
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 1 Intercept term
 8  Linear terms (represented by the name of the 

variable)
 8 Quadratic terms (TH^2, CB^2, etc.)
28 Interaction terms (HB*DT, CB*TH, etc.)

The linear terms are used to determine the critical inputs. 
Four of the inputs are significant: HB, DT, P, and MT. These 
are the critical inputs.

The interaction and quadratic terms are used to help 
determine what model to fit to the data. When multiple terms 
appear of the same line, it means they are confounded 
together. Their individual effects cannot be separated. If the 
row tests significant, it can be concluded that one or more of 
the terms is significant. If the row tests nonsignificant, it is 
usually assumed that all terms are nonsignificant. Six of the 
interaction rows test nonsignificant allowing the 24 interac-
tions on these rows to be eliminated. One interaction row 
tests  significant. These four interactions cannot be eliminated 

Table 2 Effects Table for Seal Strength Average—
Screening Experiment

Term Effect P-value

Intercept 0.000
Hot bar temperature (HB) 2.997 0.004
Cold bar temperature (CB) 0.969 0.170
Dwell time (DT) −4.589 0.001
Pressure (P) 3.938 0.001
Room temperature (RT) 0.697 0.301
Cooling air pressure (CA) −0.031 0.962
Material thickness (TH) 0.253 0.693
Material temperature (MT) 2.116 0.017
HB*CB, DT*TH, P*MT, RT*CA 0.884 0.203
HB*DT, CB*TH, P*CA, RT*MT −11.219 0.000
HB*P, CB*MT, DT*CA, RT*TH 1.013 0.154
HB*RT, CB*CA, DT*MT, P*TH −0.353 0.584
HB*CA, CB*RT, DT*P, TH*MT 0.589 0.374
HB*TH, CB*DT, P*RT, CA*MT 1.353 0.075
HB*MT, CB*P, DT*RT, CA*TH −0.259 0.686
TH^2, CB^2, DT^2, P^2, RT^2, 

CA^2, TH^2, MT^2
0.000
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based on the data. However, reason tells us that the HB*DT 
interaction is the only interaction on this row between two 
critical variables, and thus most likely to be responsible for 
the row testing significant. The last row contains all eight 
quadratic terms. The fact that it tests significant indicates 
that the  quadratic terms for all critical inputs should be 
included in the model to be fit.

The effects column represents the amount that the seal 
strength average changes as a result of adjusting the inputs 
from its low setting to its high setting. The estimated effect of 
the HD*DT interaction row is −11.219. It is much larger than 
any other effect. Understanding this interaction effect is criti-
cal for the  understanding of the heat sealer.

The standard deviation can also be analyzed. However, care 
must be taken because the standard deviations of each trial are 
of five units over a very limited period of time and from a single 
roll of material. They might underestimate the variation experi-
enced in full-scale production. We will return to this issue later.

When analyzing seal burns, the terms cannot be tested for 
significance because all the repeated trials had zero defects 
resulting in an error estimate of zero. However, a normal proba-
bility plot of the effects can be performed. Nonsignificant effects 
should form a line, whereas significant effects should fall off of 
this line. The result is shown in Figure 3. Both temperature hot 
bar and dwell time test significant. The group of interactions 
associated with the HB*DT interaction also tests significant.

Figure 3 Normal probability plot of effects on burn.
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To summarize, the screening experiment has identified 
four critical inputs: HB, DT, P, and MT. It also indicates that 
the HB*DT interaction group and quadratic effects should be 
included in the model. We are now ready to develop a model 
for the process.

RESPONSE SURFACE METHOD STUDY

Now that the screening experiment has determined the  critical 
inputs, a response surface study can be run to help  understand 
the relationship between these critical inputs and the outputs. 
The response surface study will provide plots of the effects of 
the critical inputs as well as an equation.

The data already collected during the screening experi-
ment can be reused. However, the response surface study also 
requires additional data to be collected. In order to determine 
which quadratic effects exists, the six additional trials given 
in Table 3 must be run. The resulting data is also shown. 
These trials were selected using the D-optimal design method 
(4) with the trials from the screening  experiment used as the 
starting design. The other four inputs that did not test 
 significant have been eliminated from the study. As they do 
not affect either output, they were set at low-cost settings. For 
example, cooling air had no benefit so was turned off. This is 
an often unrecognized benefit of DOE.

The significant effects for the seal strength average are 
given in italic in Table 4. In addition to the effects previously 

Table 3 Additional Trials and Data for Response Surface Study

Trial HB DT P RT SS-Ave SS-SD
No. of 
burns

23 200 0.75 150 90 28.08 3.698 0
24 150 0.5 100 90 11.89 6.682 0
25 150 0.75 100 70 18.48 1.494 0
26 175 1 100 110 21.38 4.524 1
27 175 0.75 150 110 31.44 0.406 1
28 175 1 50 90 19.82 4.779 1

Abbreviations: HB, hot bar temperature; DT, dwell time; P, pressure; RT, 
room temperature; SS, seal strength; SD, standard deviation.
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found, both dwell time and hot bar temperature have qua-
dratic effects. The block effect tests whether a change or shift 
in the process occurred between the two sets of data. None 
was detected.

Using a regression analysis involving only those effects 
testing significant in Table 4 results in the following 
equation:

Seal strength = –409.2736 + 3.7514 HB + 263.0555 DT 
 + 0.0408 P + 0.0482 MT – 0.0086 HB2 
 – 75.7987 DT2 – 0.9046 HB DT

A couple of additional checks are performed for the adequacy 
of the model. The coefficient of determination, or R2 value, is 
96.8%, which is very good. A lack-of-fit test is performed 
 comparing the error in the estimated values at each data 
point with the estimated noise obtained from the repeated 
trials. The lack-of-fit test passes, indicating that the model’s 
fit to the data is within the accuracy expected based on the 
data’s noise.

A model has now been developed for the seal strength 
average. A total of 28 trials were required. The strategy used, 
resolution IV screening experiment followed by design aug-
mentation, was selected in order to minimize the number of 

Table 4 Analysis Table for Seal Strength 
Average—R/S Study

Term Coeff P-value

Intercept 28.482 0.000
Block 0.388 0.339
Hot bar temperature (HB) 1.491 0.000
Dwell time (DT) −2.241 0.000
Pressure (P) 2.030 0.000
Material temperature (MT) 0.986 0.005
HB*DT −5.604 0.000
HB^2 −5.818 0.000
DT^2 −5.213 0.000
P^2 −1.588 0.109
MT^2 −0.940 0.319
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trials required. Some alternative approaches and the corre-
sponding number of trials are as follows:

Response surface study including all eight candidate inputs—
 82 trials 
Response surface study including just four critical inputs—26 
 trials (requires guessing right four critical inputs)

The approach used is as efficient as running a response surface 
study on just the four critical inputs without the risk of having 
to guess the correct four critical inputs.

The seal strength standard deviation can be modeled as 
well. The significant effects are given in italics in Table 5. The 
logs of the standard deviations were analyzed, as is standard 
practice since the distribution of the standard deviation is 
right skewed.

Using a regression analysis involving only those effects 
testing significant in Table 5 results in the following equation:

Log (seal strength SD) = 24.5885 – 0.3360 HB – 33.5870 DT 
   + 0.3847 MT + 0.0008 HB2 
   + 14.4755 DT2 – 0.0021 MT2

   + 0.0730 HB DT

HB and MT are included even though they did not test signifi-
cant as HB*DT and MT2 are included. The R2 value is 73.98% 

Table 5 Analysis Table for Log of Seal 
Strength Standard Deviation—R/S Study

Term Coeff P-value

Intercept 0.40886 0.100
Block −0.10737 0.363
Hot bar temperature (HB) 0.05190 0.574
Dwell time (DT) 0.21439 0.030
Pressure (P) 0.08235 0.376
Material temperature (MT) 0.04454 0.628
HB*DT 0.44002 0.000
HB^2 0.59853 0.050
DT^2 1.10414 0.001
P^2 0.31131 0.271
MT^2 −0.73999 0.013
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which is OK. The model also passes the lack-of-fit test. Again, 
care must be taken because the standard deviations might 
underestimate the variation experienced in production.

The significant effects for the burn are given in italic in 
Table 6. The arcsine of the fraction defective is analyzed. Only 
HB and DT have been identified as critical inputs and were 
included in the model. The above model has an R-squared 
value of 79.6% and passes the lack of fit test. Removing the 
two quadratic terms, which both tested non-significant, causes 
the lack of fit test to fail. Therefore, it was decided to leave the 
two quadratic terms in the fitted equation: 

Arcsine (Burn FD) =  0.734053 − 0.006676 HB 
− 0.619195 DT + 0.000015 HB2 

+ 0.158355 DT2 + 0.002629 HB DT

Figure 4 contains a contour plot of the previous equation. 
Percent burn is considered a major defect for which it is desired 
to be below 1% defective. From the contour plot, we can con-
clude that if DT is maintained below 0.7 seconds, the percent 
burns will be below 1%. This is true for all values of HB, P, 
and MT within the region of study.

We can establish an operating window for percent burn 
as shown in Table 7. In general, this is the way attribute 
 characteristics will be handled. We construct a model, and 
then determine the widest possible operating window. We will 
restrict ourselves to this operating window when dealing with 
other measurable characteristics like seal strength. We could 

Table 6 Analysis Table for Arcsine of Burn 
Fraction Defective—R/S Study

Term Coeff P-value

Intercept 0.001492 0.845
Block 0.002955 0.458
Hot bar temperature (HB) 0.014980 0.000
Dwell time (DT) 0.019725 0.000
HB*DT 0.016721 0.000
HB^2 0.007748 0.394
DT^2 0.008023 0.368
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follow a similar approach with the seal strength average and 
standard deviation. The specification limits for seal strength 
are 20 to 32 lb. To achieve a high-quality product, we would 
like the standard deviation to be no more than one-twelfth the 
width of this interval, resulting in a maximum standard 
 deviation of 1 lb. We want the seal strength average to be close 
to 26 lb. Plotting contour plots for both the seal strength 
 average and standard deviation will identify regions were the 
different requirements are met. Hopefully, a region will be 
determined that satisfies all the requirements.

This approach has several distinct disadvantages:

●  It assumes that the equation for the standard deviation 
correctly predicts the variation that will be experi-
enced in production. In many cases, the equation will 
underestimate the full range of variation experienced 
in manufacturing.

Table 7 Operating Window for Percent Burn

Input Operating window Worst-case condition

Hot bar temperature 150 to 200°F 200°F
Dwell time 0.5– 0.7 sec 0.7 sec
Pressure 50 to 150 lbs Any value
Material temperature 70 to 110°F Any value

Figure 4 Contour plot of burn percent defective. Abbreviations: 
DT, dwell time; HB, hot bar temperature.

Burn % Defective
200

175

150

HB

0.5 0.75 1
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% Def = 5
% Def = 4
% Def = 3
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●  It assumes that all critical inputs have been identified 
and are controlled. Because operating windows are 
established for all critical inputs, the ability to make 
compensating adjustments is limited.

●  It does not consider manufacturing capability in setting 
operating windows for the critical inputs. The resulting 
design may not be manufacturable.

●  When there are more than two critical inputs, it is 
 confusing to overlay contour plots to establish a three- 
and four-dimensional operating window.

For these reasons, a different approach will be proposed. We 
will explore this approach in one of the following sections. But 
first, before we can execute this approach, we still need to 
gather one additional piece of information.

CAPABILITY OF CRITICAL INPUTS

We have now completed four of the five items we set out to 
complete. So far we have:

1. Identified the critical output variables

2. Developed measurements for these output variables 
and established specifications based on customer need;

3. Identified the critical input variables affecting the 
outputs;

4. Modeled the effect of the critical inputs on the critical 
outputs

Still to be accomplished is:

5. Determine manufacturing and supplier capabilities 
to control the critical  input variables.

This requires performing capability studies and life testing 
on the different critical inputs. For hot bar temperature, a 
temperature transducer was installed to continuously  record 
the temperature. The temperature range over several extended 
runs varied 6°F up and down from the set point. The range of 
12°F is based on continuous measurement of the temperature 
giving thousands of readings and should conservatively contain 



Role of Designed Experiments in Control Plans 191

at least 99.7% of future values or ± 3 standard deviations. We 
will use one-sixth of this 12°F range, equal to 2°F, as a bound 
on the standard deviation.

For DT, a high-speed video camera (100 frames per 
second) is used to  measure the number of frames the hot bar 
is in contact with the material. This is  performed repeatedly 
for several days. From this data, the DT standard deviation is 
estimated to be 0.08 seconds.

P was handled similar to HB. The estimated standard 
deviation is 1 lb. That leaves MT. The material sits in the 
room and is expected to vary by the same amount as RT. RT 
varies from summer to winter. Data would have to be col-
lected over a year to determine the full range. As an alterna-
tive, operators were asked to remember the hottest and the 
coldest that the room becomes. This range was again divided 
by 6 to obtain an upper bound for the standard deviation 
equal to 4°F.

When obtaining estimates of the variation of the critical 
inputs, it is important  to capture the full range of variation 
expected over long-term manufacturing. Table 8 summarizes 
the capabilities of the different critical inputs.

ROBUST TOLERANCE ANALYSIS

We have now gathered all the necessary data. The next step is 
to use this information to develop the control plan. An approach 
called robust tolerance analysis (5) will be used. It is a combi-
nation of tolerance analysis for setting the width of the toler-
ances or operating windows of the inputs and robust design 
methodologies for setting the targets or nominals of the inputs. 
Robust tolerance analysis is a systematic approach for setting 
targets and tolerances to achieve a desired level of quality at 

Table 8 Manufacturing Capabilities of Critical Inputs

Input Estimated standard deviation

Hot bar temperature 2°F
Dwell time 0.08 sec
Pressure 1 lb
Material temperature 4°F
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the lowest possible cost. It starts with a tolerance analysis to 
evaluate the current design.

We have estimates of the variation for each of the inputs 
and a model for how the inputs affect the output. From this, 
we can predict how the output will vary. One way of doing this 
is to perform a computer simulation. This requires randomly 
generating values for the inputs and plugging them into the 
equation to see how the output behaves.

More generally, we can perform a tolerance analysis to 
predict how the output behaves. When all the inputs are tar-
geted at the center of the study window, Figure 5 shows the 
results of a statistical tolerance analysis (HB = 175, DT = 0.5, 
P = 100, and MT = 70). The seal strength is estimated to have 
an average of 24.2 lb with a standard deviation of 2.5 lb. The 
defect rate is estimated to be 4.69%.

This tolerance analysis was performed by taking the 
equation for the average  from the response surface study and 
using it to derive the following equation for the seal strength 
standard deviation (6):

σ
σ

SS
HB DT HB Dt t t

=
− −( ) + −3 7514 0 0172 0 9046 263 30555 151 5974

2 2. . . . . TT HB DT

P MT HB

t−( )
+ + + +

0 9046

0 0408 0 0482 0 00014792

2 2

2 2 2 2 4

.

. . .

σ

σ σ σ 111490 885 0 818301164 2. .σ σDT DT+

Figure 5 Tolerance analysis when hot bar temperature = 175, 
dwell time = 0.5, pressure = 100, and materials temperature = 70. 
Abbreviations: LSL, lower spec limit; T, target; USL, upper spec 
limit.

Seal Strength - (SS)
Statistical Tolerance

16.717 32pounds

TLSL USL

Characteristic Value
Average: 24.206
Standard Deviation: 2.4963
Cp: 0.80
Cc: 0.30
Cpk: 0.56
Def. Rate (normal) 4.69%
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The targets of the critical inputs are tHB, tDT, tP, and tMT respec-
tively, and these inputs vary around their targets with stan-
dard deviations σHB, σDT, σP, and σMT. This formula is based on 
the root sum of squares formula for combining variation. For 
each input, its contribution to the variation of seal strength is 
its slope times its standard deviation. The slopes can be 
obtained by taking partial derivatives of the equation for seal 
strength. The remaining terms are a result of the quadratic 
and interaction terms in the model.

Note that σSS does not depend on tP and tMT but does 
depend on tHB and tDT. Adjusting HB and DT affects the varia-
tion. Adjusting P and MT affects the average but not the vari-
ation. The capability study in Figure 5 was performed by 
entering the targets and standard deviations of the input 
variables from Table 8 into the equation for the average from 
the response surface study and the previous equation for the 
standard deviation.

In a previous section, an equation was fit to the log of the 
standard deviation using a response surface study. When 
HB = 175, DT = 0.5, P = 100, and MT = 70, the calculated stan-
dard deviation using this equation is 1.15. This is quite a bit 
lower than the standard deviation of 2.50 predicted using the 
tolerance analysis shown in Figure 5. What is the difference 
between these two estimates? The tolerance analysis estimate 
is based on the full range of variation expected in  manufacturing. 
The response surface estimate is based on the variation 
observed during the limited study conditions. In general, the 
response surface estimate will underestimate the full range of 
variation. Taguchi (7) proposes a solution to this problem 
where for each trial, rather than take a random sample of 
units, a noise array is run where the inputs are purposely 
adjusted to mimic their variation under actual manufacturing 
conditions. This makes the study more difficult to run, 
 especially if there are lots of sources of variation requiring a 
complex noise matrix. Robust tolerance analysis offers an 
alternative approach.

While the tolerance analysis estimate will generally be 
the larger estimate, this will not always be the case. The toler-
ance analysis estimate depends on having all the sources of 
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variation included in the model. It, too, will underestimate the 
full range of variation in manufacturing if other sources of 
variation exist that were not included in the model. Best prac-
tice is to proceed with the approach that provides the larger 
estimate of the variation. In this case study, the predicted 
 variation is larger than the observed variation, so we will pro-
ceed to use the  tolerance analysis.

A tolerance analysis predicts the behavior of the output 
for a specified set of targets for the inputs. The tolerance anal-
ysis can be repeated for different sets of targets to identify the 
optimal targets. In this case study, we have an observed equa-
tion for the average, and we have a predicted equation for the 
standard  deviation. These can be used to obtain an equation 
for the capability index Cpk. We can then maximize this equa-
tion to identify the optimal targets for the inputs.

The settings for the inputs maximizing Cpk are shown in 
Table 9. The target for material temperature (MT) was fixed 
at 70 and the other three inputs optimized. This answers the 
question, without preheating the material, what are the opti-
mal settings? The resulting performance is shown in Figure 
6. The variation has been reduced by 71% from 2.50 to 0.73. 
The defect rate has been reduced from 4.7% to essentially 
zero. Adjusting targets on the input variables to reduce 
the variation of the output variables is called robust design. 
We have just seen an example of how robust designs can be 
achieved.

Maximizing Cpk minimizes seal strength variation while 
centering the  average at target. HB and DT were set to reduce 
the variation. P was set to center the average at 26 lb. 
Remember, the target of P does not affect the standard devia-
tion. If seal strength shifts off-target, the operator should use 

Table 9 Optimal Targets for Critical Inputs

Input Target Standard deviation

Hot bar temperature (HB) 185°F 2°F
Dwell time (DT) 0.62 sec 0.08 sec
Pressure (P) 62 lb 1 lb
Material temperature (MT) 70°F 4°F
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P to bring it back on target. The operators should not adjust 
HB or DT. Adjusting either will increase the variation.

Table 10 shows the three competing approaches to 
robust design. When the equation is known, a robust toler-
ance analysis should be performed. When the equation is not 
known, designed experiments must be used and all three 

Table 10 Different Approaches to Robust Design

Name
How to estimate 

variation Limitations

Dual 
response

Model standard devia-
tion based on 
observed variation at 
each trial

Variation during limited study is 
frequently less than that in 
long-term manufacturing 

Taguchi 
methods

Model standard devia-
tion using noise array 
designed to mimic 
manufacturing 
variation

Underestimates variation if 
sources of variation are not 
included in noise matrix; works 
best if primary source(s) of 
variation have been identified

Robust 
toler-
ance 
analysis

Model average and uses 
a tolerance analysis 
to predict the 
variation

Underestimates variation if 
sources of variation are not 
included in the model

Figure 6 Tolerance analysis for optimal conditions when material 
temperature = 70. Abbreviations: LSL, lower spec limit; T, target; 
USL, upper spec limit.

Seal Strength - (SS)
Statistical Tolerance

20 32pounds

TLSL USL

Characteristic Value
Average: 26
Standard Deviation: 0.72994
Cp: 2.74
Cc: 0.00
Cpk: 2.74
Def. Rate (normal) 2.0410   10 dpm^-
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approaches are applicable. The three approaches differ in 
how they obtain an equation for the standard deviation of 
the output. These approaches can be combined to generate 
even more efficient strategies. In this case study, a combina-
tion of the dual response and robust tolerance analysis was 
used. If the primary sources of variation have been identi-
fied, a combination of Taguchi methods and robust tolerance 
analysis might be preferred.

The optimal targets appear to result in excellent quality. 
This will not always be the case. If so, tighter tolerances must 
be specified for some of the critical inputs. To determine which 
inputs to tighten, the variation displayed in Figure 6 can be 
partitioned into the contribution of each input as shown in 
Figure 7. Tightening the tolerance of DT has the largest effect. 
A more detailed tolerance stack-up will be performed once a 
control plan is established. We will wait until then to deter-
mine if any tolerances need to be tightened.

ESTABLISHING THE CONTROL PLAN

Based on the understanding gained, the control plan in Table 11 
was established. The control plan provides operating ranges 
for each of the four critical inputs along with controls designed 
to ensure they remain within their operating windows.  These 

Figure 7 Contributions of individual inputs. Abbreviations: DT, 
dwell time; HB, hot bar temperature; MT, material temperature; P, 
pressure.

Seal Strength
Interval for Values = (23.81,28.19)+/-3SD

Percent
Reduction

100%

0%

Inputs
DT MT HB P
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Table 11 Initial Control Plan

Name Requirement Controls

HB Maintain between 179 
and 191°F with a 
target of 185°F

Continuously monitor and 
alarm if out

DT Maintain between 0.39 
and 0.87 sec with a 
target of 0.63 sec

Continuously monitor and 
alarm if out

P Maintain setting 
between 50 and 
150 lbs; adjust in 
response to control 
chart of seal strength 
average

Once set, maintain 
within ± 3 lb of 
set point

Continuously monitor and 
alarm if out

MT Maintain between 60 
and 80°F

Continuously monitor and 
alarm if out

Material must be in tempera-
ture-controlled environ-
ment at least 24 hours prior 
to use in production

Seal strength Below 5% defective at 
worst-case conditions 
for critical inputs

Below 1% defective 
under normal 
conditions

Perform hourly inspections 
using variables sampling 
plan with AQL = 1.0%

Seal strength 
average

Average must be 
maintained between 
26 ± 2 lb

Control chart using  
__

 X  at 
start-up and every hour 
using five samples. Adjust 
pressure as needed to keep 
in control limits

Seal strength 
standard 
deviation

Standard deviation must 
be below 2 lb (Cp ≥ 1) 
at worst-case condi-
tions for critical inputs

Standard deviation 
should be below 1 
(Cp ≥ 2) under normal 
conditions

Maintain S control chart in 
conjunction with  

__
 X  chart 

above to detect increase in 
process variation

(Continued)
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operating windows are inside the operating window previ-
ously established for seal burn.

The widths of the operating windows were selected based 
on the capabilities  of the four critical input variables combined 
with the optimal targets for seal strength. To confirm that 
these windows are adequate, a more detailed tolerance analy-
sis will be performed. As ranges are specified for each of the 
inputs, and alarms are used to detect excursions, we cannot 
assume the different inputs remain centered around their 
 targets. This is particularly true for RT where one could 
 operate at either the low end or the high end of its range for 
 considerable periods of time. This violates one of the assump-
tions of statistical tolerance, so a more appropriate tolerance 
analysis is required.

For HB, a target of 185°F and a tolerance of 179–191°F 
was specified based on historical data. Temperature cycles up 
and down. The average remains close to the target but not 
exactly equal to the target. As an alarm is used to ensure that 
the range is maintained, it was decided HB is best represented 
by the tolerance shown in Figure 8. It is expected that all 
values remain in the interval 179–191°F and that the average 
remains in the narrower interval 183–187°F. The interval for 
the average represents the middle one-third of the specifica-
tion limits.

Table 11 Initial Control Plan (Continued)

Name Requirement Controls

Percent burns Maintain below 5% 
defective at worst-case 
conditions for critical 
inputs

Below 1% defective 
under normal 
conditions

Perform hourly inspections 
using attribute sampling 
plan whose AQL = 1.0%. 
This will detect a major 
problem quickly

Trend inspection data on 
weekly basis to verify 
continual conformance to 
requirement

Abbreviations: AQL, accepted quality level; DT, dwell time; HB, temperature hot bar; 
MT, material temperature; P, pressure.
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The type of tolerance shown in Figure 8 is referred to as 
a process tolerance (5). It is not as restrictive as a statistical 
tolerance, which assumes perfectly centered processes. It is 
more restrictive than a worst-case tolerance, which makes no 
assumptions about the average. Process tolerances like the one 
in Figure 8 represents middle ground between statistical toler-
ances and worst-case tolerances.

Likewise, process tolerances were established for DT and 
P. For P, there is not a specified target. The control plan uses 
a control chart of the seal strength average to detect seal 
strength being off-target and then allows P to be adjusted to 
maintain the average on target. For the tolerance stack-up, P 
will be set to the value in range of 50–150 lb which centers 
seal strength at 26 lb. For MT, a worst-case tolerance will be 
used. This makes no assumptions about MT other than it 
remains in the range of 60–80°F. A summary of the tolerances 
selected is shown in Table 12. The results of the tolerance 
stack-up are shown in Figure 9.

According to Figure 9, variation in the four critical inputs 
should not cause a problem if the seal strength is properly 
centered to start with. The variation in Figure 9 exceeds that 
in Figure 6, which was based on a statistical tolerance  analysis. 
However, we are not yet done. Figure 9 assumes that the opti-
mal set point for P is used. In actuality, there will be some 
error associated with selecting the set point for P.

Figure 8 Tolerance for hot bar temperature: values between 
179 and 191°F and average in the middle one-third. Abbreviations: 
LSL, lower spec limit; T, target; USL, upper spec limit.

Hot Bar Temperature - (HB)
Process Tolerance

TLSL USL

179 191
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The set point for P is set using an  
__

 X  control chart of seal 
strength based on a sample of five units. The sample size of 
five allows a shift of 1.5 standard  deviations to be detected 70% 
of the time on the next point plotted. This should maintain the 
seal strength average within 1.5 standard deviations (=1.2 lb) 
of target. A worst-case tolerance of ±1.2 lb was added to the 
previous analysis to account for the adjustment error. The final 
results are shown in Figure 10. The worst Cpk expected is 1.56 
resulting in around two defects per million (dpm). This is a 

Table 12 Tolerances for Critical Inputs

Input
Type of 

tolerance Target
Tolerance for 

values
Tolerance for 

average

Temperature 
hot bar

Process 185°F 179 to 191°F 183 to 187°F

Dwell time Process 0.63 sec 0.39 to 0.87 sec 0.55 to 0.71 sec
Pressure Process Value which 

centers 
seal 
strength

Set point ± 3 lb Set point ± 1 lb

Material 
temperature

Worst-case 70°F 60 to 80°F

Figure 9 Tolerance analysis assuming optimal set point for pres-
sure. Abbreviations: LSL, lower spec limit; T, target; USL, upper 
spec limit.

Seal Strength - (SS)
Process Tolerance

20 32pounds

TLSL USL

Characteristic On-Target Worst-Case
Average - Minimum: 26.405 25.203

Maximum: 26.928
Standard Deviation: 0.31373 0.82869
Cp: 6.37 2.41
Cc: 0.07 0.15
Cpk: 5.94 2.04
Def. Rate (normal): 1.92 10 -̂65 dpm 0.000466 dpm
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level of quality called six-sigma quality. Under the normal 
operating conditions  shown in Figure 10, the seal strength 
average is expected to be maintained within the window of 
26 ± 2 lb and the standard deviation should remain below 1 lb. 
These requirements are listed in the control plan along with 
controls designed to ensure they continue to be meet.

The basic strategy used here is to establish operating win-
dows for the critical input variables over which it is known 
that the seal strength standard deviation and seal burns will 
be acceptable. This operating window does not guarantee that 
the seal strength average is acceptable. Instead, a control chart 
is used with sufficient sample size to verify that the require-
ment for the seal strength average is met on a lot-by-lot basis.

IQ TESTING AND OQ CHALLENGE TESTING

Having established the control plan, it is now time to perform 
the confirmation studies to demonstrate the control plan 
works, starting with installation qualification (IQ). During 
IQ, the alarms for HB, DT, P, and RT should be tested to dem-
onstrate that they function properly.

Figure 10 Tolerance analysis assuming seal strength centered 
using control chart. Abbreviations: LSL, lower spec limit; T, target; 
USL, upper spec limit.

Seal Strength - (SS)
Process Tolerance

20 32pounds

TLSL USL

Characteristic On-Target
Average -Minimum:

Maximum: 28.128
Standard Deviation: 0.82869
Cp:
Cc:
Cpk:
Def. Rate (normal):

Worst-Case
26.405 24.033

0.31373
6.37 2.41
0.07 0.35
5.94 1.56

1.49 dpm1.92 10^-65 dpm
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Also, if not already done, the method used to measure 
seal strength should be validated. A control chart will be used 
to detect an off-center process. This control chart is required 
to detect a 2-lb shift off-target. It can do this if the seal strength 
standard deviation is below 1 lb. This requires that the 
 measurement error for seal strength be below 0.5 lb.

Next is operational qualification (OQ) challenge testing. 
From Figure 4, the worst-case condition for seal burn occurs 
at the high settings of HB and DT which, per Table 12, are 
HB = 187°F and DT = 0.71 sec. A contour plot is shown in 
Figure 11 for the seal strength standard deviation over the 
selected operating windows for the average (targets). Worst-
case conditions for seal strength standard deviation are 
HB = 187°F and DT = 0.71 seconds and HB = 183°F and 
DT = 0.55 seconds. Both these parameters simultaneously 
being at worst-case conditions is unlikely to occur in practice. 
Therefore, the defect level requirements will be relaxed some-
what at the challenge conditions.

For seal burn, it will be demonstrated with 90% confi-
dence that the defect rate is below 5% defective at the worst-
case condition. The double sampling plan for proportion 
 nonconforming n1 = 50, a1 = 0, r1 = 2, n2 = 75, and a2 = 2 can 
be used for this purpose. This plan requires 50 samples ini-
tially. If there are no seal burns, it passes. If there are two or 

Figure 11 Contour plot of seal strength standard deviation.  
Abbreviations: DT, dwell time; HB, hot bar temperature; SS, seal 
strength; MT, material temperature; P, pressure.

SS - Std. Dev.
0.71

0.63

0.55

183 185 187

HB

DT

SS - Std.Dev. = 0.82
SS - Std.Dev. = 0.695
SS - Std.Dev. = 0.57
SS - Std.Dev. = 0.445
SS - Std.Dev. = 0.32

P = 65
MT = 70
SSerr = 0 
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more seal burns, it fails. If a single seal burn is found, 75 addi-
tional units are inspected, and the total number of seal burns 
found must be two or less to pass. Passing this sampling plan 
provides 90% confidence that the seal burn percent defective 
is below 5% (8). If the defect rate is below 0.6%, there is a 95% 
chance of passing this plan. From Figure 4, the seal burn rate 
is expected to be below 1% at the worst-case conditions, so 
there is a high chance of passing.

For seal strength standard deviation, it will be demon-
strated with 95% confidence that the standard deviation is 
below 2 lb (Cp ≥ 1) at each of the worst-case conditions. The 
variables sampling plan for the standard deviation n = 11, 
s = 1.4 can be used for this purpose. This plan takes 11 sam-
ples and accepts if the estimated standard deviation is below 
1.4. If this plans passes, one can state with 95% confidence 
that the standard deviation is below 2. If the standard devia-
tion is below 1 lb, as expected, there is a 95% chance of passing 
this plan (9).

Also as part of the OQ worst-case challenges, it will be 
demonstrated that the control chart properly adjusts the 
average. At the two worst-case conditions for the standard 
deviation, once set-up adjustments are made and the initial 
point on the control chart is within the control limits, a vari-
ables sampling plan will be used to inspect for seal strength. 
Take 50 samples, calculate the capability index Ppk, and 
accept if the Ppk is above 0.81. Passing this plan allows one to 
state with 95% confidence that the seal strength defect rate is 
below 2.5%. Again, a higher defect is allowed because the 
standard deviation is expected to be higher than under normal 
production conditions. If the defect rate is below 0.5%, there 
is a 95% chance of passing this plan.

The sampling plans are summarized in Table 13. Each 
plan was selected based on the claim that could be made if it 
passes. However, each plan was also evaluated with respect to 
what is required to assure the plan passes. Based on expected 
performance from previous studies, each plan has a reason-
able chance of passing. It should be noted that the perfor-
mance level must be significantly better than the performance 
level one is validating in order to have a reasonable chance of 
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passing. For seal burn, the sampling plan demonstrates that 
the rate of seal burns is below 5%. If the rate of seal burns is 
around 5% there is a 90% chance of failing. The seal burn rate 
must be below 0.6% (nine times better than 5%) to routinely 
pass the sampling plan.

PQ TESTING

PQ testing involves three runs using materials purposely 
selected to represent the full range of materials used during 
manufacturing. The tests are summarized in Table 14. For 
percent burn, the double sampling plan n1 = 250, a1 = 0, 
r1 = 3, n2 = 560, and a2 = 3 will be used. Passing this 
sampling plan provides 90% confidence that the seal burn 
percent defective is below 1%. The samples are divided 
equally across the three PQ runs. This allows one to state 
that the process average across the lots is below 1%. If the 
seal burn percent defective is below 0.2%, there is a 95% 
chance of passing. Based on Figure 4, the seal burn rate 
should be well below this.

Table 13 Operational Qualification Challenge Testing

Parameter 
tested Claim Sampling plan

95% chance of 
passing if: 

Seal burn 90% confidence 
that the 
defect rate is 
below 5% 

Double sampling plan 
for proportion noncon-
forming n1 = 50, a1 = 0, 
r1 = 2, n2 = 75, a2 = 2

Defect rate 
is below 
0.6%

Seal strength 
standard 
deviation

95% confidence 
that the 
standard 
deviation is 
below 2 lb 
(Cp ≥ 1)

Variables sampling plan 
for standard deviation 
n = 11, s = 1.4

Standard 
deviation is 
below 1 lb

Seal strength 
out of spec

95% confidence 
that the seal 
strength 
defect rate is 
below 2.5% 

Variables sampling plan
for proportion noncon-
forming n = 50, Ppk ≥ 
0.81

Defect rate 
is below 
0.5%
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For seal strength standard deviation, the acceptance 
sampling plan used takes n = 50 samples and accepts if the 
estimated standard deviation is below 0.84. If this passes, one 
can state with 95% confidence that the standard deviation is 
below 1. If the standard deviation is below 0.7 lb, there is a 
95% chance of  passing this plan. According to Figure 10, we 
expect the standard deviation to be between above 0.3 but well 
below 0.7 lb. The sample size here is larger than needed but 
was matched to the sample size of the plan for the seal strength 
average  next. This plan will be applied separately to each of 
the 3 PQ lots.

For seal strength average, take 50 samples and accept if 
the estimated Ppk value is above 0.95. Passing this plan allows 
one to state with 95% confidence that the seal strength defect 
rate is below 1%. If the defect rate is below 0.04%, there is a 
95% chance of passing. This plan will also be applied sepa-
rately to each PQ lot.

Finally, it should be demonstrated that the four critical 
inputs variables remained within their limits. With good knowl-
edge of the process performance, acceptance sampling plans 
can be selected that not only demonstrate the process is work-
ing, but for which there is a reasonable expectation of passing.

Table 14 Performance Qualification Testing Under Anticipated 
Conditions

Parameter 
tested Claim Sampling plan

95% chance 
of passing if: 

Seal burn 90% confidence that 
the defect rate is 
below 1% 

Double sampling plan for 
proportion noncon-
forming n1 = 250, 
a1 = 0, r1 = 3, n2 = 560, 
a2 = 3

Defect rate 
is below 
0.2%

Seal 
strength 
standard 
deviation

95% confidence that 
the standard 
deviation is below 
1 lb (Cp ≥ 2)

Variables sampling plan 
for standard deviation 
n = 50, s = 0.84

Standard 
deviation 
is below 
0.7 lb

Seal 
strength 
out of spec

95% confidence that 
the seal strength 
defect rate is 
below 1%

Variables sampling plan 
for proportion noncon-
forming
n = 50, Ppk ≥ 0.95

Defect rate 
is below 
0.04%
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CONCLUSION

Being able to validate a process first requires that a process be 
developed that “will consistently produce a product meeting 
its predetermined specifications and quality attributes.” 
Validation, if fully integrated into the design process, is simply 
good business practice. Failure to properly execute these tools 
results in the design/validation process degenerating into one 
of trial and error. This is an unpredictable process with numer-
ous surprises. Time is lost, the goal switches from obtaining 
the optimal design to just getting one that works, and the final 
stages of validation are approached with fingers crossed. 
Proper application of these tools results in the optimal design, 
reduces costs, improves quality, has few surprises, and 
decreases design time.

Designed experiments can play a key role in this process. 
They can be used to establish operating windows for attribute 
characteristics. However, their most important use is as part 
of the specification translation process. Designed experiments 
must be carefully integrated into the overall process. This pro-
cess requires five items:

1. Identify the critical output variables.
2. Develop measurements for these output variables 

and establish specifications based on the customer 
need.

3. Identify the critical input variables affecting the 
outputs.

4. Model the effect of the critical inputs on the critical 
outputs.

5. Determine supplier and manufacturing capabilities 
to control the critical  input variables.

Designed experiments play a key role in items 3 and 4. They 
also identify worst-case conditions for OQ testing and result 
in an understanding that allows more complex control plans 
to be established. However, designed experiments are not 
enough. They must be carefully coordinated with other tools 
like FMEA, mistake proofing, customer research tools, mea-
surement system analysis, capability  studies, acceptance 
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sampling plans, tolerance analysis, robust design, and the 
numerous other tools described in Annex A of GHTF (2).

Based on the knowledge gained, a control plan can be 
established that ensures continual conformance of the pro-
cess. All too often, validations are passed but, weeks later, 
major problems are encountered as materials change, tooling 
wears, operators change, and so on. These instances highlight 
that validation should not only demonstrate that things are 
currently OK, but should establish a system of controls 
designed to ensure ongoing conformance.
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INTRODUCTION

Reducing the amount of time required to properly develop, 
scale-up, and optimize a new process and/or product is abso-
lutely critical and directly related to the competitive position of 
any business. Thus, it is important that all product develop-
ment work be performed in a highly efficient and cost-effective 
manner. Initial product development work must identify the 
critical inputs to a manufacturing process and set proper 
 specifications for these variables. In addition, if the process is 
shown to be robust, the tolerances on noncritical variables can 
be widened.

In any industry regulated by the Food and Drug Admin-
istration (FDA), it has historically been very difficult to make 
changes to a product’s formulation, specifications, and/or pro-
cessing conditions once they have already been established 
and documented in previous development or clinical work. 
Consequently, there tends to be a “snowballing” effect where 
poor or inadequate initial development work results in a final 
commercial product that is out of control and often fails 
 subsequent process validation studies. By using “Design of 
Experiments (DOE)” from the beginning of process develop-
ment to the end, the robustness of the manufacturing process 
can be maximized while minimizing the time required to bring 
the product to market. In addition, by using DOE upfront to 
gain a  thorough understanding of the process, the scope of the 
required validation work can be easily identified and justified. 
This leads to efficient process validation studies with a high 
probability of success.
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This book is dedicated to showing the reader how to use 
DOE during validation studies. However, the additional pur-
pose of this particular chapter is to show the awesome power 
and value of DOE when used prior to validation studies. In 
other words, DOE is the best tool to use during initial process 
development in order to effectively and efficiently character-
ize the process and maximize the chances for success during 
future validation runs and commercial manufacturing of the 
product. The basic idea is to use DOE to gain a solid under-
standing of the key factors that affect a certain response vari-
able. For example, how is a tablet’s dissolution rate (response 
variable) affected by different factors, such as active-ingredi-
ent particle size, blend time, excipients, granulation method, 
and the like? At the beginning of any process development 
phase, it is not uncommon to have a list of 5, 10, or even 20 
potential factors that could affect a critical response variable. 
The proper use of designed experiments is the fastest and 
most effective way to whittle this list down to only the factors 
that actually have an impact on the response. This results in 
much faster and cost-effective validation studies because only 
the critical factors are included in the final validation work. 
The previously written “Development Report” will contain the 
DOE work which shows that the other factors do not affect the 
response variable over the ranges studied. This upfront elimi-
nation of potential factors is very important because it makes 
the final validation work more clear and concise. Of course, 
having fewer factors to consider when writing the validation 
protocol makes the final workload much more reasonable and 
not so time consuming.

As it is often the best and easiest to learn from examples, 
this chapter  contains two different case studies to illustrate 
the proper use and benefits of statistically designed experi-
ments during process development work (performed prior to 
actual validation studies). In order to provide a template for 
performing a good DOE study, each case study will follow the 
same general sequence of steps as follows:

Step 1: Make a list of all factors that could affect the 
desired response variable(s). This is usually performed 
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in a meeting room using a brainstorming process based 
on past experience with the process, previous data, 
and/or common sense.

Step 2: Choose the “High” and “Low” levels for each factor. 
For example, if pressure is one of the factors, it could 
have a “High” value of 40 psi and a “Low” value of 20 psi. 
It is alright to have a factor that is an attribute too. For 
example, if the factor is the material used, then the 
“High” level could be Material A and the “Low” level 
could be Material B (or vice-versa; in this case, the 
assignment of “High” and “Low” levels is arbitrary).

Step 3: Choose the design for your experiment. Fractional 
factorial designs or low-resolution designs are best for 
process development work where there are several (say 
four or more) factors to consider. Full factorial designs 
are used when it is necessary to eliminate all confound-
ing or  aliases between main effects and interactions.

Step 4: Put together the design matrix. In the case stud-
ies that follow, MINITAB™ software will be used for 
the matrix design and data analysis. MINITAB will 
automatically put the experimental runs in random 
order. This is important because randomization will 
help to eliminate any biases caused by running the 
same conditions several times in a row.

Step 5: Determine the sample size for each individual 
experimental run.

Step 6: Perform the experiments and compile the data. 
Wherever possible, use a good software package to ana-
lyze the data (e.g., MINITAB).

Step 7: Use the data to draw conclusions.
Step 8: If necessary, add more runs to the design matrix 

to eliminate aliases or confounding patterns. For exam-
ple, if a fractional factorial experiment shows evidence 
of interactions between variables, it may be necessary 
to run the full factorial to determine which interactions 
are truly important.

Step 9: Perform confirmation runs and/or replicate the 
experiment. This is an extremely important part of the 
DOE process. As the scope of the experimentation work 
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is usually limited by economic as well as other factors, 
this step is, unfortunately, often times overlooked. 
There are many different ways of doing confirmation 
experimentation and it will always depend on the given 
situation. A good deal of thinking is required at this 
step. Ultimately, you need to assure yourself that you 
have good data and a good understanding of your pro-
cess. If you do not have this, then all the original work 
is of little value.

Confirmation runs often take the form of a replication 
(one or more times) of the original matrix. This means run-
ning the same experiments over again in a new random order 
and collecting the response data again. Or, depending on the 
situation, one might just do some experimental runs using the 
best factor settings as predicted by the experimental results 
from the original matrix. In the case of matrix replication, it is 
important to note that there is a difference between rerunning 
or replicating the experiments versus just repeating measure-
ments during the initial experimental runs. This is because 
several measurements from the same experimental run would 
tend to have a smaller standard deviation compared with the 
data from several separate runs. Thus, better experimental 
data is usually obtained by replicating the design matrix (as 
opposed to just using repeated measurements).

Depending on the situation, confirmation runs may be 
done prior to  validation runs. Or, if you’re feeling really good 
about the data and your understanding of the process, the 
validation runs (per the written protocol) may be the confir-
mation runs for the DOE. Remember, validation should always 
be just a confirmation of what you already know. Thus, you 
should almost never fail a validation study. Right?

Before we begin, a general disclaimer must be made. As 
is the case with life in general, DOE offers no guarantees for 
success. It is important to realize that there is no magical 
system or methodology out there that will solve all of our prob-
lems every time. Although DOE is the best way to perform 
process development work, there is absolutely never a time 
when an experimenter can stop using his or her brain. One 
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must never stop thinking. If a given data set does not, from a 
logical standpoint, seem to make sense, then there is a good 
chance that there is a problem with the experiment. In addi-
tion, one must always be aware of the difference between a 
data set’s statistical significance versus practical significance. 
The bottom line is, use DOE as a powerful tool, but don’t ever 
stop thinking. That being said, let’s have some fun with some 
real case studies now.

Case Study 1—Elimination of Leakage Between 
Welded Parts

The following is an excellent example of a typical designed 
experiment  performed early in the development process (i.e., 
long before process validation studies). It is based on an 
actual study performed at a medical device manufacturing 
plant.

This example includes a list of eight potential factors that 
might affect the final product characteristic or response vari-
able. Without the use of DOE, gaining an understanding of 
how eight different factors come together to affect the final 
product would be a truly daunting task at best. However, the 
process of determining which factors actually have an impact 
on the response variable may be greatly simplified by apply-
ing a fractional factorial DOE.

The process under study is a typical process that one 
might see at a medical device manufacturing site. In this case, 
it is a simple ultrasonic welding process where two plastic 
parts are being welded together to form a strong bond. The 
response variable to be considered is the number of parts that 
have a crack in the weld area after processing. So let’s go 
through our list of steps.

Step 1: List the factors and response variable(s).
 There are eight factors related to the set-up of the weld-

ing station that might cause cracks in the final welded 
part. In order to keep it simple, we will just label factor 
A through factor H in our design matrix to follow. It is 
important to note that this process actually has more 
than one response variable. In fact, that is usually the 
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case during process development and validation work. 
For example, the strength of the weld and the number 
of parts that are discolored could be other important 
responses. However, in order to keep things simple, we 
will only consider the one response for this particular 
case study. That is, the number of parts with cracks 
when observed visually using a magnifying glass.

Step 2: Determine the factor levels.
 Each factor is assigned a “High” and “Low” level. For 

this particular case study, in order to show that the 
actual factors and levels do not affect the final data 
analysis, we’ll leave the factors in a coded format in 
the design matrix. A high level for a given factor is 
indicated by a numeral “1” and a low level is indicated 
by a “−1”. See Table 1.

Step 3: Choose the design matrix.
 We will use Figure 1 to choose the matrix for this 

designed experiment. The columns are labeled with the 
number of factors, and the rows are labeled with the 
number of experimental runs that will be required to 
complete the DOE. In each individual box, the design 
resolution is given. A detailed discussion of design reso-
lution is beyond the scope of this book. However, the 
boxes are labeled to assist in the choosing process. For a 
typical process development study, it is usually best to 
start off with a design having resolution IV. In this type 
of design, the calculated main effects will be confounded 
(or aliased) only with three-factor interactions. As the 
existence of three-factor interactions in nature is 

Figure 1 Available factorial designs (with resolution).

No. of Factors 

82No. of
Runs

3 4 5 6 7 9 10

4 Full III 
8 Full IV III III III 
16 Full V IV IV IV III III 
32 Full VI IV IV IV IV 
64 Full VII V IV IV 
128 Full VIII VI V 
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extremely rare, it is often safe to discount the three-
factor interaction if it does not make sense from a logical 
standpoint. The potential problem with these designs is 
that the two-factor interactions are confounded with 
each other. So, if a significant two-factor interaction is 
found, the experimenter will not know specifically which 
one is important. This is the price one must pay for doing 
less than a full-factorial design. All full-factorial designs 
and other designs having a resolution of at least V are 
labeled as such in Figure 1. This means that they have 
minimal or no confounding of effects. For a late-stage 
process development study having just a few factors or a 
validation study that looks to establish “proven accept-
able ranges” for the different factors, a full factorial 
design is often the best choice because all possible 
 combinations of factors are studied and none of the cal-
culated effects are confounded with other effects. 
However, it is not usually the best choice for screening 
experiments because they require at least twice as many 
experimental runs and, thus, much more time and effort 
than a fractional factorial design. Also, if there are no 
interactions present, then the resolution IV design will 
likely provide the same information, but with far less 
experimental runs (at least half as many). Designs 
having resolution III are normally not a good choice 
because the main effects are confounded with potential 
two-factor interactions that may or may not exist.

Looking at Figure 1, as the number of factors in this 
particular case study is eight, we will choose the first 
resolution IV design that we encounter when moving 
down the column. This design requires 16 experimen-
tal runs. This is known as a 28–4 fractional factorial 
design. A 28 full-factorial design would require 256 
runs. Thus, the 28–4 fractional factorial is one sixteenth 
of a full design.

Step 4: Set up the design matrix.
 MINITAB is used to set up the design matrix. The 

matrix showing the 16 experiments to be run is shown 
in Table 1. The column labeled “Run Order” is used to 
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randomize the experiments to eliminate any potential 
bias caused by the order in which the experiments are 
run. In order to  calculate an error estimate within the 
data, three center-point runs are included within the 
matrix. Thus, the actual number of runs needed is 19. 
Please note that a better way to get a good error esti-
mate is to replicate the experimental runs at least two 
or more times. However, this is not always possible 
from a practicality standpoint. Also, note that the last 
column (labeled “Crack Rate”) in Table 1 is reserved for 
the actual response data for each run.

Step 5: Determine the sample size for each run.
 Note that our response “variable” is really not a variable 

at all, but an attribute. Each individual part is either 
good or bad. In other words, each part either has a crack 
or does not have a crack. We are not getting any numeri-
cal data from each part. Thus, we are confronted with a 
dilemma that has long plagued would-be experimenters. 
How do we perform a statistically designed experiment 
with attribute data? The answer is somewhat simple 
although often difficult to deal with: we must change the 
attribute data into variable data. A key assumption in 
the analysis of factorial designs is that the response is 
measured on a continuous scale and has a constant vari-
ance. Since attribute data is not measured on a continu-
ous scale and does not have a constant variance, the data 
must be transformed to meet these requirements. In this 
case, our attribute data will be changed to a continuous 
variable by first calculating a fraction defective (or 
“Crack Rate”) and then applying a variance stabilizing 
transformation. Therefore, we will divide, for each run, 
the number of defective parts (i.e., parts with observed 
cracks) by the total number of parts inspected. In this 
way, we are calculating a “fraction defective” (p) that can 
be used in our subsequent data analysis. Each fraction 
defective will then be transformed using an arc-sine root 
transformation1 given by the following formula:

 R = sin−1 √p (or R = Arc-Sine(p1/2))
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  where:
  R = the final Response Variable to be analyzed
  p = the calculated fraction defective

 By applying the arc-sine root transformation to the 
fraction defective, the final response data to be ana-
lyzed is more likely to comply with the assumptions of 
traditional DOE.

Often times, the amount of attribute data needed to 
calculate a statistically significant proportion (e.g., frac-
tion defective) is rather large. In this case, the sample 
size will be determined using MINITAB software. 
Assuming we are interested in detecting a difference 
between a sample that is 4% defective and a sample that 
is 1% defective (note: this is a decision that the experi-
menter and/or company management must make), the 
MINITAB “Power and Sample Size” calculator for two 
proportions can be used. This results in a sample size of 
568 parts per run that will have to be inspected for 
cracks. Fortunately, for this particular case, the visual 
inspection of each part takes only a few seconds to com-
plete. So the inspection of 568 parts actually takes less 
than one hour.

Step 6: Perform the experiments/compile the data.
 After running each of the 19 experiments given in Table 1, 

the data is added to the design matrix. Columns are 
added to the MINITAB worksheet for the calculated 
fraction defective and the final transformed data. The 
transformed data (using the arc-sine root transforma-
tion) is then analyzed using MINITAB. The actual 
response variable data is shown in Table 2. The trans-
formed data is in the column labeled “ArcSine”.

Step 7: Analyze the data/draw conclusions.
 The resulting print-out from MINITAB is given in 

Figure 2. However, the easiest way to interpret the data 
is to look at the pareto chart of calculated effects (Fig. 3) 
and related normal probability plot (Fig. 4). The vertical 
line on the pareto chart in Figure 3 corresponds to a 
P-value of 0.10 for each calculated effect. In other words, 
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if there is at least a 90% probability that a factor is 
 statistically significant in affecting the response vari-
able (“ArcSine”), then the bar for that particular factor 
will extend beyond the red line. These main effects and/
or interaction terms are the only points that are labeled 
by MINITAB on the normal probability plot in Figure 4. 

Figure 2 MINITAB™ print-out for case study 1. Abbreviations: 
DF, degrees of freedom; SS, sum of squares; MS, mean square.

Factorial Fit: ArcSine versus A, B, C, D, E, F, G, H 

Estimated Effects and Coefficients for ArcSine (coded units) 

Term        Effect      Coef   SE Coef      T      P 
Constant             0.24995  0.006045  41.35  0.001 
A          0.17876   0.08938  0.006045  14.79  0.005 
B          0.19729   0.09865  0.006045  16.32  0.004 
C         -0.01626  -0.00813  0.006045  -1.34  0.311 
D          0.02854   0.01427  0.006045   2.36  0.142 
E          0.01655   0.00828  0.006045   1.37  0.304 
F         -0.00978  -0.00489  0.006045  -0.81  0.503 
G          0.02083   0.01041  0.006045   1.72  0.227 
H         -0.03299  -0.01650  0.006045  -2.73  0.112 
A*B        0.03291   0.01645  0.006045   2.72  0.113 
A*C       -0.00605  -0.00302  0.006045  -0.50  0.666 
A*D        0.02468   0.01234  0.006045   2.04  0.178 
A*E       -0.01075  -0.00538  0.006045  -0.89  0.468 
A*F        0.01752   0.00876  0.006045   1.45  0.284 
A*G        0.01062   0.00531  0.006045   0.88  0.472 
A*H       -0.04041  -0.02020  0.006045  -3.34  0.079 
Ct Pt                0.01798  0.015213   1.18  0.359 

S = 0.0241795   R-Sq = 99.63%   R-Sq(adj) = 96.64% 

Analysis of Variance for ArcSine (coded units) 

Source              DF    Seq SS    Adj SS     Adj MS      F      P 
Main Effects         8  0.295399  0.295399  0.0369248  63.16  0.016 
2-Way Interactions   7  0.015586  0.015586  0.0022265   3.81  0.224 
  Curvature          1  0.000817  0.000817  0.0008171   1.40  0.359 
Residual Error       2  0.001169  0.001169  0.0005846 
  Pure Error         2  0.001169  0.001169  0.0005846 
Total               18  0.312971 

Alias Structure (up to order 3) 
I
A + B*C*G + B*D*H + B*E*F + C*D*F + C*E*H + D*E*G + F*G*H 
B + A*C*G + A*D*H + A*E*F + C*D*E + C*F*H + D*F*G + E*G*H 
C + A*B*G + A*D*F + A*E*H + B*D*E + B*F*H + D*G*H + E*F*G 
D + A*B*H + A*C*F + A*E*G + B*C*E + B*F*G + C*G*H + E*F*H 
E + A*B*F + A*C*H + A*D*G + B*C*D + B*G*H + C*F*G + D*F*H 
F + A*B*E + A*C*D + A*G*H + B*C*H + B*D*G + C*E*G + D*E*H 
G + A*B*C + A*D*E + A*F*H + B*D*F + B*E*H + C*D*H + C*E*F 
H + A*B*D + A*C*E + A*F*G + B*C*F + B*E*G + C*D*G + D*E*F 
A*B + C*G + D*H + E*F 
A*C + B*G + D*F + E*H 
A*D + B*H + C*F + E*G 
A*E + B*F + C*H + D*G 
A*F + B*E + C*D + G*H 
A*G + B*C + D*E + F*H 
A*H + B*D + C*E + F*G 
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Figure 3 Pareto chart for case study 1.
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Figure 4 Normal probability plot for case study 1.
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Together, these plots show that factors A and B are by 
far the most significant in affecting the response vari-
able. This same conclusion may also be drawn from the 
“Main Effects Plots” shown in Figures 5 and 6 where the 
most significant factors have a plot with a large slope. In 
addition, there is an apparently significant interaction 
between factors A and H (Figs. 3, 4, and 7). Statistically, 
the data is not saying that factors H or the A–H interac-
tion is definitely important. However, as we are prepar-
ing for future validation studies and we do not want to 
overlook anything, we will take a more conservative 
route and include factor H in future work.

So, in summary, the final conclusions are:

1. Factors A and B are, by far, the most important in 
affecting the proportion of parts that end up with 
cracks. The lower values for these factors result in 
less cracks in the parts. The main effects plots for 
all factors are given in Figure 5. The Main Effects 
plots for only the statistically significant factors 

Figure 5 Main effect plots for all factors (A–H).
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(i.e., Factors A, B, and H) are given in Figure 6. Note 
that the Main Effects plots for factors A, B, and H are 
not horizontal. This indicates statistical significance. 

2. There is potentially a minor interaction between 
 factors A and H. This is illustrated by the plot given 
in Figure 7. If there were no interaction, the two lines 
would be essentially parallel. Since the existence of 
this interaction makes sense from a logical perspec-
tive, Factor H will not be discounted from future 
studies.

3. All of the other factors (at their given high and low 
levels) do not appear to have a significant impact on 
the response variable. It may make sense to do fur-
ther experiments to try to widen the tolerance on 
some or all of these factors. This will make the proc-
ess more robust in the end. This may also allow these 
factors to be set at their most economic levels during 
commercial manufacturing.

Figure 6 Main effect plots for statistically significant effects (A, B, 
and H).
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Step 8: Eliminate or reduce aliases.
 The “alias structure” for the DOE is given by MINITAB 

in Figure 2. This shows that the A–H interaction is 
actually the cumulative effect of the A–H component 
along with the B–D, C–E, and F–G interactions. In 
other words, the A–H interaction is confounded with 
the B–D, C–E, and F–G interactions. Remember that 
this is the price we paid for doing less than the full fac-
torial design. At this point, it may make sense to think 
about the different factors logically and decide what 
interactions actually make sense. Which of these two- 
factor interactions are highly unlikely? For simplicity 
sake, we will assume that only the A–H interaction 
makes any sense for this particular example. This is 
somewhat normal in that, when analyzing a typical 
designed experiment, it is often the case that the most 
significant individual factors have a significant inter-
action term as well. However, if there was any doubt, 
further experimentation would be necessary to remove 

Figure 7 Interaction plot for factors A and H.

H

M
ea

n

10-1

0.40

0.35

0.30

0.25

0.20

0.15

Interaction Plot (data means) for ArcSine

“A” Point Type

1 Corner

-1 Corner
0 Center



Process Development Work 227

the aliases. This is what makes DOE so great. The 
experiments are like building blocks where you start 
with the minimum amount of work needed. Then, if 
necessary, you can always add more experiments later. 
In this example, if we wanted to make sure that no 
two-factor interactions were confounded with other 
two-factor interactions, we would have to move up to a 
Resolution V design. According to Figure 1, we would 
have to add 48 more runs to the original design matrix 
(64 total runs). Again, in order to keep things simple, 
we will assume that we are happy with the data “as is” 
and move on to confirmation runs.

Step 9: Confirm the results.
 When deemed appropriate for an early process devel-

opment study, the confirmation of the original data 
and conclusions can be obtained by replicating the 
original design matrix. The confirmation of the quanti-
tative impact of factors A, B, and H may be obtained by 
running a new DOE using only these three variables 
while holding the others constant at their target values. 
Again using Figure 1, the resultant DOE matrix would 
be a full factorial (23) requiring eight runs.

Finally, the validation work may be performed for this 
process. This would most likely consist of repeating the 23 full-
factorial design mentioned earlier along with three process 
validation runs at nominal conditions for all factors. The pro-
cess validation runs would essentially be confirmation runs of 
the actual process to be used in future commercial manufac-
turing. Of course, all of these experiments would be based on 
an approved protocol and would have to yield acceptable data 
compared with the product specifications.

Whereas case study 1 is a good example of work per-
formed early in the product development life cycle, the next 
case study presented in this chapter is more representative of 
a study performed much later during the development stage 
(or even during process/product validation). From a DOE 
 perspective, the only real difference between the two case 
studies is the number of factors being considered. As case 
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study 1 had eight factors, this next example has only three 
factors to examine. This is typical for late-stage process devel-
opment and validation work because the list of potential 
 factors has already been whittled down from the “trivial 
many” to the “critical few.”

Case Study 2—Process Development and Validation of an 
Adhesive Dispensing Station

Like the previous example, this case study is based on an 
actual designed experiment performed at a medical device 
manufacturing plant. The process under scrutiny should be 
somewhat simple to visualize. Two separate parts of a medi-
cal device are to be essentially “glued” together using a liquid 
adhesive. In this case, the two parts are a needle and a plastic 
housing used to hold the needle. The “adhesive dispensing 
station” is just one station on an assembly line that makes 
the entire device. The two parts arrive at the station where 
the adhesive is applied to permanently attach the needle to 
the housing. Given adequate time for the adhesive to dry, the 
response variable to be considered is the bond strength or the 
force required to pull the needle from the housing by a special 
testing instrument. There are three factors to be considered 
in the DOE.

Again, we will go through our list of steps …

Step 1: List the factors and response variable(s).
 There are three factors related to the set-up of the 

adhesive dispensing station that may impact the final 
bond strength. They are as follows:

1. Time = the time (in seconds) that the adhesive is 
allowed to flow from an application nozzle onto the 
part.

2. Pressure = the level of pressure used to dispense the 
adhesive.

3. Vacuum Level = the level of vacuum used to ensure 
proper application of the adhesive.

Step 2: Determine the factor levels.
 Each factor is assigned a “High” and “Low” level. For 

this example, the coded format will not be used. Instead, 
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the actual high and low values for each factor are listed 
in Table 3.

Step 3: Choose the design matrix.
 Again, we will use Figure 1 to choose the matrix for 

this designed experiment. As the number of factors in 
this case study is three, we really have no choice but to 
use the full-factorial design having eight runs. The 
half-fraction design having four runs is a resolution III 
design and, therefore, of little value at this stage.

Step 4: Set up the design matrix.
 MINITAB is used to set up the design matrix. The 

matrix showing the experiments to be run is shown 
in Table 3. 

The last column is reserved for the actual data for 
each run. Note that a center-point run (run 9) is included 
in the matrix. So the number of experiments is nine 
(i.e., the eight experiments required for the full-facto-
rial design plus the one center-point run). The purpose 
of this center-point run is to gain an understanding of 
the possible curvature of the response variable data. In 
other words, we want to know if the bond strength is 
linear over the full range of factors studied.

At this point, we need to consider how we will sepa-
rate actual “effects” from random error within the 
experiment. In case study 1, this was accomplished by 
doing three center-point runs, or, in other words, three 
runs at target conditions for each factor. Note that this 

Table 3 Design Matrix for Case Study 2
Standard 
order

Run
order

Time
(sec)

Pressure
(psi)

Vacuum 
level

Bond strength 
(lbs)

1 7 0.2 10 5
2 3 0.4 10 5
3 9 0.2 30 5
4 2 0.4 30 5
5 8 0.2 10 15
6 4 0.4 10 15
7 1 0.2 30 15
8 6 0.4 30 15
9 5 0.3 20 10
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Table 4 Design Matrix for Case Study 2 with Five Replications 
and Response Data
Standard 
order

Run 
order

Time
(sec)

Pressure
(psi)

Vacuum 
level

Bond strength 
(lbs)

1 12 0.2 10 5 24.10
2 1 0.4 10 5 26.15
3 5 0.2 30 5 26.80
4 20 0.4 30 5 25.85
5 41 0.2 10 15 25.55
6 16 0.4 10 15 27.05
7 8 0.2 30 15 24.70
8 2 0.4 30 15 25.50
9 38 0.2 10 5 18.50
10 15 0.4 10 5 28.65
11 45 0.2 30 5 24.95
12 31 0.4 30 5 25.95
13 26 0.2 10 15 23.05
14 40 0.4 10 15 26.55
15 21 0.2 30 15 24.70
16 28 0.4 30 15 24.45
17 23 0.2 10 5 28.70
18 3 0.4 10 5 24.00
19 9 0.2 30 5 25.30
20 17 0.4 30 5 25.05
21 7 0.2 10 15 26.30
22 36 0.4 10 15 24.30
23 30 0.2 30 15 26.80
24 33 0.4 30 15 26.20
25 14 0.2 10 5 25.30
26 25 0.4 10 5 24.45

(Continued)

also provided an estimate for curvature for the response 
data (see the ANOVA results in Fig. 2). However, a 
better way to get an error estimate for the design 
matrix is to replicate the experiment. As it is very easy 
to set up the station, perform the experimental runs, 
and test the parts, we will get a good error estimate for 
this study by replicating the DOE five times. That 
means each experimental run listed in Table 3 will be 
run five times. Thus, the complete DOE matrix with 
all 45 runs is given in Table 4. This does not mean that 
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all DOE studies require five replications. But, it is a 
very good idea (when possible) to replicate and confirm 
your experiments to make sure your conclusions are 
accurate. This point will be clearly illustrated later in 
this chapter.

Step 5: Determine the sample size for each run.
 The sample size for each individual run will be one 

part. However, as we are performing each run five 
times, we will actually end up with five variable data 
points for each of the nine different combinations of 
factors. According to MINITAB, by replicating the DOE 
five times, we will have a very high likelihood of detect-
ing the magnitude of “effect” that we are looking for. 
The number of replications is determined using the 
“Power and Sample Size” function for a two-level 
 factorial design in MINITAB.

Table 4 Design Matrix for Case Study 2 with Five Replications 
and Response Data (Continued)

Standard 
order

Run 
order

Time
(sec)

Pressure
(psi)

Vacuum 
level

Bond strength 
(lbs)

27 22 0.2 30 5 27.70
28 6 0.4 30 5 25.75
29 39 0.2 10 15 24.45
30 42 0.4 10 15 24.10
31 18 0.2 30 15 26.45
32 27 0.4 30 15 26.45
33 29 0.2 10 5 27.80
34 24 0.4 10 5 24.80
35 10 0.2 30 5 24.50
36 11 0.4 30 5 26.05
37 37 0.2 10 15 28.85
38 4 0.4 10 15 25.70
39 35 0.2 30 15 25.10
40 19 0.4 30 15 25.65
41 43 0.3 20 10 25.80
42 34 0.3 20 10 26.65
43 44 0.3 20 10 24.30
44 32 0.3 20 10 23.80
45 13 0.3 20 10 25.40
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Step 6: Perform the experiments/compile the data.
 After running each of the 45 experiments given in Table 

4, the data is added to the design matrix and analyzed 
using MINITAB. The actual response variable data for 
bond strength is also given in Table 4.

Step 7: Analyze the data/draw conclusions.
 The MINITAB analysis Printout is given in Figure 8. 

The pareto chart (Fig. 9) and corresponding normal 
probability plot (Fig. 10) show that there are no statis-
tically significant main effects or interactions present. 
Note that the bars are all to the left of the verticle line 
on the pareto chart and none of the points on the prob-
ability plot are labeled. In addition, looking at the data 

Figure 8 MINITAB™ print-out for case study 2.

Bond Strength Versus Time, Pressure, Vacuum

Estimated Effects and Coefficients for Bond (coded units) 

Term                     Effect      Coef     SE Coef       T      P 
Constant                          25.5563      0.2936   87.04  0.000 
Time                     0.1525    0.0762      0.2936    0.26  0.797 
Pressure                 0.2775    0.1387      0.2936    0.47  0.639 
Vacuum                   0.0775    0.0388      0.2936    0.13  0.896 
Time*Pressure           -0.1625   -0.0812      0.2936   -0.28  0.784 
Time*Vacuum             -0.1525   -0.0762      0.2936   -0.26  0.797 
Pressure*Vacuum         -0.2675   -0.1338      0.2936   -0.46  0.651 
Time*Pressure*Vacuum     0.2625    0.1312      0.2936    0.45  0.658 
Ct Pt                             -0.3663      0.8808   -0.42  0.680 

Analysis of Variance for Bond (coded units) 

Source                DF      Seq SS     Adj SS     Adj MS      F      P 
Main Effects           3       1.063      1.063     0.3542   0.10  0.958 
2-Way Interactions     3       1.212      1.212     0.4041   0.12  0.949 
3-Way Interactions     1       0.689      0.689     0.6891   0.20  0.658 
Curvature              1       0.596      0.596     0.5962   0.17  0.680 
Residual Error        36     124.129    124.129     3.4480 
  Pure Error          36     124.129    124.129     3.4480 
Total                 44     127.689 

Estimated Coefficients for Bond using data in uncoded units 

Term                         Coef 
Constant                  21.9175
Time                       9.1625 
Pressure                 0.143750 
Vacuum                   0.264500 
Time*Pressure           -0.343750 
Time*Vacuum              -0.67750 
Pressure*Vacuum        -0.0105500 
Time*Pressure*Vacuum    0.0262500 
Ct Pt                   -0.366250 
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Figure 9 Pareto chart for case study 2.

Figure 10 Normal probability plot for case study 2.
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from a position of practical significance, the calculated 
effects in the ANOVA table (Fig. 8) are extremely low 
numbers. The largest individual effect (the pressure) 
is less than 0.3 lbs. Considering the average bond 
strength for the 45 runs is 25.5 lbs and the lowest 
reading was 18.5 lbs, a fluctuation of 0.3 lbs seems 
hardly significant (especially when the product speci-
fication for bond strength is only 10 lbs). Some may 
look at this data and think that we have not learned 
anything because nothing affects the response vari-
able. However, quite the opposite is true. We have 
learned that, over the ranges studied, none of the three 
controllable factors (time, pressure, vacuum level) 
 significantly affect the bond strength of the finished 
product. This is a robust process! This is exactly the 
kind of data that we want to see prior to validation 
studies and future commercial manufacturing.

Step 8: Eliminate or reduce aliases.
 As the DOE is a full-factorial design, there are no aliases 

to worry about.
Step 9: Confirm the results.
 As we have already performed five replications of a 

full-factorial experiment, we can feel pretty good about 
our results. In addition, we now know that the three 
factors of time, pressure, and vacuum level do not affect 
the response variable (bond strength) over the ranges 
studied. Therefore, it really does not make sense to 
repeat the full-factorial as a part of a validation study. 
In this case, it would probably make sense to proceed 
directly to process validation by doing three runs (per 
approved protocol) at target values for time, pressure, 
and vacuum level. Ideally, this work could just be 
included as part of the final product qualification, 
where the manufacturing line is run for three separate 
eight-hour shifts, and the finished product from each 
shift is sampled and tested per the protocol. Of course, 
the rationale for the scope of the validation work must 
be clearly documented (usually in a “Background” 
section in the protocol) and supported by the data 
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that is compiled and discussed in a well-written Develop-
ment Report.

Finally, let’s conclude this chapter with an extremely 
important discussion of statistics and the value of data 
 replication and confirmation. We all know that all statistics 
have an associated probability that goes along with them. 
Without going into a long discussion on the subject, what this 
means to us is that there is always a chance that a wrong con-
clusion may be drawn from a given data set. There is always 
a chance that we may obtain some bad data or even a statisti-
cal outlier in our final response data. This is especially true 
for small sets of data. 

When we use DOE, the possibility of drawing a wrong 
conclusion is greatest when the experimental matrix is not 
replicated at least once. Naturally, the more data you have, 
the more likely you are to gain an understanding of the “truth.” 
When doing a designed experiment, once again we need to put 
our brains into action and think about what our results are 
telling us. In case study 1, the matrix was not replicated. In 
other words, we did not repeat every experimental run. 
However, the results did not deviate from what was expected, 
and they certainly made sense from a logical standpoint (i.e., 
no surprises). This is typical for a DOE performed early in the 
process development stage. There may be several factors 
included in the design matrix that are, based on historical data 
or scientific rationale, probably not significant, but must be 
checked out anyway just to be sure. Thus, it is often possible to 
get by without replicating a DOE that is performed early in 
process development. And let’s face it, if you have eight or more 
factors in your design matrix, the amount of time and effort 
required to complete all of the experiments just once may 
already be taxing your resources (even without doing a replica-
tion). It is also important to note, for this particular example, 
that we did take 568 samples per run in order to calculate a 
fraction defective. So we did have more than one sample per 
run, but only one variable data point.

Case study 2 was performed just prior to the final  process/
product validation studies. There were only three controllable 
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factors to consider that might have an effect on the response 
variable. However, there was a good degree of uncertainty 
regarding which, if any, were significant. In this case study, 
the previous process development work was limited at best. In 
addition, the required experiments were easy and inexpensive 
to perform. Therefore, it made a lot of sense to plan for replica-
tions up front. Remember, we always want to be highly confi-
dent that we understand the process prior to going into 
validation studies. It probably was not necessary to perform 
five replications of the design matrix, but usually three is a 
good number to pursue when possible.

In order to provide a clear example of the danger of not 
replicating a DOE, let’s take a look back at the data for case 
study 2. By performing five replications, it was ultimately 
clear that, over the ranges studied, none of the three factors 
had a significant impact on the response variable (bond 
strength). But what if we had not replicated the DOE? Is it 
possible that we could have got different results? Of course, 
the answer to that question is a resounding yes!

Hence, let’s see what happens when we take just one of 
the five replicated data sets and analyze it using MINITAB. 
The data will be from the fourth replication of the DOE and 
is given in Table 5. Using our same method of data analysis 
as earlier, we interpret the data using the graphs and ANOVA 
print-out given in Figures 11–13. Clearly, this data is saying 

Table 5 Design Matrix and Response Data for Case 
Study 2 (Fourth Replication Only)
Standard 
order

Time
(sec)

Pressure
(psi)

Vacuum 
level

Bond strength 
(lbs)

1 0.2 10 5 25.30
2 0.4 10 5 24.45
3 0.2 30 5 27.70
4 0.4 30 5 25.75
5 0.2 10 15 24.45
6 0.4 10 15 24.10
7 0.2 30 15 26.45
8 0.4 30 15 26.45
9 0.3 20 10 23.80
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Figure 11 MINITAB™ print-out for case study 2 (fourth replica-
tion only).

Bond Strength Versus Time, Pressure, Vacuum

Estimated Effects and Coefficients for Bond (coded units) 

Term                     Effect      Coef 
Constant                           25.581
Time                     -0.787    -0.394 
Pressure                  2.012     1.006 
Vacuum                   -0.437    -0.219 
Time*Pressure            -0.188    -0.094 
Time*Vacuum               0.613     0.306 
Pressure*Vacuum           0.162     0.081 
Time*Pressure*Vacuum      0.362     0.181 
Ct Pt                              -1.781 

Analysis of Variance for Bond (coded units) 

Source                DF      Seq SS     Adj SS     Adj MS      F      P 
Main Effects           3      9.7234     9.7234     3.2411      *      * 
2-Way Interactions     3      0.8734     0.8734     0.2911      *      * 
3-Way Interactions     1      0.2628     0.2628     0.2628      *      * 
Curvature              1      2.8203     2.8203     2.8203      *      * 
Residual Error         0      0.0000     0.0000     0.0000 
Total                  8     13.6800 

Estimated Coefficients for Bond using data in uncoded units 

Term                         Coef 
Constant                  24.6125
Time                    -0.937500 
Pressure                 0.221250 
Vacuum                 -0.0425000 
Time*Pressure           -0.456250 
Time*Vacuum             -0.112500 
Pressure*Vacuum       -0.00925000 
Time*Pressure*Vacuum    0.0362500 
Ct Pt                    -1.78125 

that factor B (pressure) is statistically significant in affecting 
the bond strength of the finished part. One could still argue 
that the practical significance is low, but the statistical 
conclusions to be drawn from this limited data set are clearly 
not accurate.

In summary, DOE is an exceptionally powerful and effi-
cient method for planning, running, and analyzing experi-
ments during process/product development. It is used to 
determine which process factors are insignificant so that 
they can be eliminated from future studies. In addition, it 
provides a quantitative  estimate of the effect that a factor 
has on one or more response variables. It also provides the 
same quantitative estimate for interactions between factors. 
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Figure 12 Pareto chart for case study 2 (fourth replication only). 
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Figure 13 Normal probability plot for case study 2 (fourth 
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This is often times very important for pharmaceutical pro-
duction processes where interactions among factors are 
common. Ultimately, DOE allows the experimenter to deter-
mine which process factors are to be included in subsequent 
validation studies. By eliminating the insignificant factors 
from the validation work, a great deal of time and money 
can often be saved. In addition, by using DOE to streamline 
the development work and  efficiently characterize the pro-
cess, the timeline for product development and a successful 
commercial launch can be shortened significantly.
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assay plate layout, 112
Production operating windows, 180
Protein affinity purification

process qualification study
monoclonal immunoaffinity 

column, 131
screening studies

monoclonal immunoaffinity, 129
Protein precipitation screening 

study
design table, 136
effects plots, 137

Proven acceptable range (PAR), 97
Purification process

precipitation step, 135
Purified proteins, 121

Quadratic term, 183
Qualification and validation

plasma protein manufacturing 
processes, 119–140

Quantitative methods
defined, 3
utilization, 3
validation, 1–46

designs, 23–24
full factorial designs, 23–24

[Quantitative methods]
ICH guidelines, 24
NCCLS guidelines, 24–25

Randomization
bioassay development and 

validation, 110
Range

validation protocol, 12
Range-finding, 70, 84

approach, 70
DOE, 74
experimental design, 70
goal, 70
initial, 108
issues, 70
key factors and ranges, 73
trigger, 70

Redundant, 174
Regression analysis output, 176

blender study, 153
for coating study solvent 

response, 164–166
Regression analysis output for 

milling study, 158, 159, 160
Relative standard deviation (RSD), 

114–115
REML. See Restricted maximum 

likelihood estimate (REML)
Repeatability, 16

defined, 17
Replacement, 173
Replication

analysis of screening designs, 64
Reproducibility, 16
Resolution III design

chemical reaction processes, 
61–63

factor screening, 66
time profiles, 67

Response-surface designs, 105
Response surface methodology 

(RSM), 143, 176, 
185–186

analysis, 150–168
applications, 144
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[Response surface methodology]
blending for product uniformity, 

150–153
case studies, 150–165
compression, 144
dissolution and residual solvent 

control in tablet coating, 
162–163

empirical models, 143–144
experimental designs, 144–150
granulation milling for 

particle-size
additive model contour plot, 

155, 156
results, 154

granulation milling for particle-
size control, 153–155

milling, 144
oral dosage form validation, 

141–168
setting factor levels, 144–145
single-factor, 150–153
tablet coating, 144
three factor, 163
trials and data, 185
two-factor, 153–155

Restricted maximum likelihood 
estimate (REML), 27, 33

RMSE. see Root mean square 
error (RMSE)

Robustness
approaches, 195
bioassay development and 

validation, 115–116
coagulation factor affinity 

chromatography purification, 
127–133

defined, 5–6, 18
pasteurization and precipitation 

steps
fractionation/purification 

process, 133–139
Robust tolerance analysis, 

191–196
Root mean square error (RMSE), 

26, 28, 35

RSD. See Relative standard 
deviation (RSD)

RSM. See Response surface 
methodology (RSM)

Ruggedness
defined, 15–17, 17
FDA, ix
Plackett-Burman designs, ix, 23

SAS®, 26, 36–37
PROC GLM, 35
PROC MIXED, 25, 26, 30, 33

Scaling, 157
Scatter plot

least-square line, 42–43, 44
Screening experiments

fractional factorial, 176, 179–185
trials and data, 181

wide study regions, 179
Screening stage

chemical reaction processes, 60
key factors and ranges, 65

Screening studies
heat inactivation conditions, 

134
protein affinity purification

monoclonal immunoaffinity, 129
Seal burns

analyzing, 184
Seal strength, 196

analysis table
average-R/S study, 186
standard deviation-R/S study, 

187
average-screening experiment

effects table, 183
individual inputs, 196
standard deviation, 187, 197, 

204
contour plot, 202

Second-order models, 144
number of terms, 145

Single-factor
RSM, 150–153

Six sigma, 91
Slope coefficient, 152
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SOP. See Standard operating 
procedure (SOP)

Specification translation process, 
175–176

Split-plot, 105
SQC. See Statistical quality control 

(SQC)
Standard operating procedure 

(SOP), 6
Statistical analyses, 25–26

tools, 176
Statistical quality control 

(SQC), 91
Statistical software package, 25, 26, 

30, 33, 35–37, 150. See also 
specific named software

Strip-plot, 105
Sum of squares

two-factor mixed model, 34

Tablet coating
contour plot for dissolution 

spray rate, 167
contour plot for residual solvent 

spray rate, 168
dissolution and residual solvent 

control in, 163
RSM, 144, 163

Taguchi methods, 195
Temperature

hot bar tolerance, 198
time interaction, 20

Test for lack-of-fit, 35
Three-dimensional plot, 155
Three-dimensional response surface 

plot
interactive model

milling study, 157
Three factors

central composite designs, 
148

RSM, 163
Time

chemical reaction processes, 72
mechanistic models, 72
temperature interaction, 20

Tolerance analysis, 192–194, 200
optimal conditions, 195

Total precision, 27
Total quality management (TQM), 

91
Treatments

defined, 18–19
Two-factors

central composite designs, 146
with interaction analysis

expected mean squares, 34
mixed model

ANOVA, 34
mean square formulae, 34
sum of squares, 34

RSM, 153–155

Uniformity trials, 112
United States Pharmacopoeia 

(USP)
validation guidelines, 6

Validation. See also Bioassay 
development and validation; 
Process development and 
valida tion of adhesive 
dispensing station

BPC process, 92
chemical reaction processes, 

47–88
data, 92
data analysis

example, 28–45
defined, 4–5, 92
vs. development, 5–6
FDA definition, 92
FDA guidelines, 6
guidelines, 6–7

ICH, 6
logistics, 3
measurement, 5
motivation, 3
one-factor-at-a-time approach, 96
oral dosage form

response surface methodology, 
141–168
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[Validation]
pharmaceutical, DOE, 97
plasma protein manufacturing 

processes, 119–140
product and process development 

life cycle, 92
protocol, 7–8

accuracy, 11
approach, 9–10
assay recording sheet, 14
attachments and forms, 13–14
background, 9
content, 7–8
documentation, 10
example, 8–14
linearity, 12
matrix, 13
precision, 11–12
purpose and scope, 9
range, 12
test work, 10–13
training verification, 10

[Validation]
quantitative aspect, 92
quantitative method, 1–46
rationale, 4–5
strategies

plasma fractionation processes, 
122–140

study
nanofiltration, 123–124

terms and definitions, 14–15
USP guidelines, 6

Validation and process analytical 
technologies, 89–102

controlled experiments, 95–99
data collection, 94–95
observational tools, 95

Variability
identifying potential 

sources, 95
Variance component analysis

within run and between run 
variability, 114






	Front cover
	Foreword
	Preface
	Contents
	Contributors
	Chapter 1. Designing Experiments for Validation of Quantitative Methods
	Chapter 2. Validation of Chemical Reaction Processes
	Chapter 3. The Role of Designed Experiments in Validation and Process Analytical Technologies
	Chapter 4. Experimental Design for Bioassay Development and Validation
	Chapter 5. Use of Experimental Design Techniques in the Qualification and Validation of Plasma Protein Manufacturing Processes
	Chapter 6. Response Surface Methodology for Validaiton of Oral Dosage Forms
	Chapter 7. The Role of Designed Experiments in Developing and Validating Control Plans
	Chapter 8. Efficient and Effective Process Development Work: The Key to a Successful Validation Study
	Index
	Back cover


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (Adobe RGB \0501998\051)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F 2006 Printer settings v20060424)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice




